run_text_generation_server.py 5.36 KB
Newer Older
liangjing's avatar
liangjing committed
1
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
Ryan Prenger's avatar
Ryan Prenger committed
2
3
4
5
6
7

"""Sample Generate GPT"""
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))
liangjing's avatar
liangjing committed
8
9
from megatron.training import get_args
from megatron.training import print_rank_0
10
from megatron.core import mpu
liangjing's avatar
liangjing committed
11
12
13
from megatron.training.checkpointing import load_checkpoint
from megatron.training.initialize import initialize_megatron
from megatron.core.models.gpt import GPTModel
Ryan Prenger's avatar
Ryan Prenger committed
14
from megatron.training import get_model
liangjing's avatar
liangjing committed
15
16
17
18
19
20
21
22
23
24
25
26
from megatron.training.arguments import core_transformer_config_from_args
from megatron.training.yaml_arguments import core_transformer_config_from_yaml
from megatron.inference.text_generation_server import MegatronServer
from megatron.inference.text_generation import generate_and_post_process
from megatron.inference.text_generation import beam_search_and_post_process
from megatron.core.transformer.spec_utils import import_module
from megatron.core.models.gpt.gpt_layer_specs import (
    get_gpt_layer_local_spec,
    get_gpt_layer_with_transformer_engine_spec,
)

from contextlib import nullcontext
Ryan Prenger's avatar
Ryan Prenger committed
27
import torch
liangjing's avatar
liangjing committed
28
29
30
31
32
33
34
35
36
37
38
39
40
from typing import Union
import megatron


def model_provider(pre_process=True, post_process=True) -> Union[GPTModel, megatron.legacy.model.GPTModel]:
    """Builds the model.

        If you set the use_legacy_models to True, it will return the legacy GPT model and if not the core GPT model.

        Args:
            pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
            post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.

Ryan Prenger's avatar
Ryan Prenger committed
41

liangjing's avatar
liangjing committed
42
43
44
        Returns:
            Union[GPTModel, megatron.legacy.model.GPTModel]: The returned model
        """
Ryan Prenger's avatar
Ryan Prenger committed
45

liangjing's avatar
liangjing committed
46
47
    args = get_args()
    use_te = args.transformer_impl == "transformer_engine"
liangjing's avatar
v1  
liangjing committed
48

Ryan Prenger's avatar
Ryan Prenger committed
49
    print_rank_0('building GPT model ...')
liangjing's avatar
liangjing committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    # Experimental loading arguments from yaml
    if args.yaml_cfg is not None:
        config = core_transformer_config_from_yaml(args, "language_model")
    else:
        config = core_transformer_config_from_args(args)

    if args.use_legacy_models:
        model = megatron.legacy.model.GPTModel(
            config,
            num_tokentypes=0,
            parallel_output=False,
            pre_process=pre_process,
            post_process=post_process
        )
    else:
        if args.spec is not None:
            transformer_layer_spec = import_module(args.spec)
        else:
            if use_te:
                transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(args.num_experts, args.moe_grouped_gemm, args.qk_layernorm)
            else:
                transformer_layer_spec = get_gpt_layer_local_spec(args.num_experts, args.moe_grouped_gemm, args.qk_layernorm)

        model = GPTModel(
            config=config,
            transformer_layer_spec=transformer_layer_spec,
            vocab_size=args.padded_vocab_size,
            max_sequence_length=args.max_position_embeddings,
            pre_process=pre_process,
            post_process=post_process,
            fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
            parallel_output=False,
            share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
            position_embedding_type=args.position_embedding_type,
            rotary_percent=args.rotary_percent,
            rotary_base=args.rotary_base
        )
Ryan Prenger's avatar
Ryan Prenger committed
88
89
90
91
92

    return model

def add_text_generate_args(parser):
    group = parser.add_argument_group(title='text generation')
liangjing's avatar
v1  
liangjing committed
93
94
    group.add_argument("--port", type=int, default=5000,
                       help='port for text generation server to run on')
Ryan Prenger's avatar
Ryan Prenger committed
95
96
97
98
99
100
101
102
103
104
105
106
107
    return parser


if __name__ == "__main__":
    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={'tokenizer_type': 'GPT2BPETokenizer',
                                       'no_load_rng': True,
                                       'no_load_optim': True})

    args = get_args()
    if args.num_layers_per_virtual_pipeline_stage is not None:
        print("Interleaved pipeline schedule is not yet supported for text generation.")
        exit()
liangjing's avatar
v1  
liangjing committed
108
109
110
    print_rank_0("WARNING: Forcing exit_on_missing_checkpoint to True for text "
                 "generation.")
    args.exit_on_missing_checkpoint = True
liangjing's avatar
liangjing committed
111

Ryan Prenger's avatar
Ryan Prenger committed
112
    # Set up model and load checkpoint
liangjing's avatar
liangjing committed
113
114
115
116
117
118
    load_context = nullcontext()
    if args.fp8:
        from transformer_engine.pytorch.fp8 import fp8_model_init
        load_context = fp8_model_init()
    with load_context:
        model = get_model(model_provider, wrap_with_ddp=False)
Ryan Prenger's avatar
Ryan Prenger committed
119
120
121
122
123
124
125
126

    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]
    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
        server = MegatronServer(model)
liangjing's avatar
v1  
liangjing committed
127
        server.run("0.0.0.0",port=args.port)
Ryan Prenger's avatar
Ryan Prenger committed
128
129

    while True:
liangjing's avatar
liangjing committed
130
        choice = torch.tensor(1, dtype=torch.long, device='cuda')
131
        torch.distributed.broadcast(choice, 0)
liangjing's avatar
liangjing committed
132
        if choice.item() == 0:
133
134
135
136
            try:
                generate_and_post_process(model)
            except ValueError as ve:
                pass
liangjing's avatar
liangjing committed
137
        elif choice.item() == 1:
rprenger's avatar
rprenger committed
138
139
140
141
            try:
                beam_search_and_post_process(model)
            except ValueError as ve:
                pass