loader_megatron.py 15.5 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

3
import json
4
5
6
7
8
9
import os
import sys
import types

import torch

liangjing's avatar
liangjing committed
10

11
12
13
def add_arguments(parser):
    group = parser.add_argument_group(title='Megatron loader')

14
15
16
17
18
    group.add_argument('--true-vocab-size', type=int, default=None,
                       help='original size of vocab, if specified will trim padding from embedding table.')
    group.add_argument('--vocab-file', type=str, default=None,
                       help='Path to the vocab file. If specified will use this to get vocab size and '
                       'trim padding from the embedding table.')
19
    group.add_argument('--megatron-path', type=str, default=None,
liangjing's avatar
liangjing committed
20
21
22
23
24
25
26
27
28
                       help='Base directory of Megatron repository')
    group.add_argument('--position-embedding-type',
                       type=str,
                       default='learned_absolute',
                       choices=['learned_absolute', 'rope'],
                       help='Position embedding type.')
    group.add_argument('--loader-transformer-impl', default='local',
                       choices=['local', 'transformer_engine'],
                       help='Which Transformer implementation to use.')
29
30
31
32
33
34
35
36
37
38
39

def _load_checkpoint(queue, args):

    # Search in directory above this
    sys.path.append(os.path.abspath(
        os.path.join(os.path.dirname(__file__),
                     os.path.pardir)))
    if args.megatron_path is not None:
        sys.path.insert(0, args.megatron_path)

    try:
liangjing's avatar
liangjing committed
40
41
42
43
        from megatron.training.arguments import parse_args, validate_args
        from megatron.training.global_vars import set_args, set_global_variables
        from megatron.training.checkpointing import load_args_from_checkpoint, load_checkpoint
        from megatron.legacy.model import module
44
        from megatron.core import mpu
45
        from megatron.core.enums import ModelType
liangjing's avatar
liangjing committed
46
        from megatron.legacy import fused_kernels
47
48
49
50
51
52
53
54
55
56
    except ModuleNotFoundError:
        print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
        queue.put("exit")
        exit(1)

    # We want all arguments to come from us
    sys.argv = ['script.py',
                '--no-masked-softmax-fusion',
                '--no-bias-gelu-fusion',
                '--no-bias-dropout-fusion',
57
                '--no-async-tensor-model-parallel-allreduce',
58
59
60
61
62
63
                '--use-cpu-initialization',
                '--micro-batch-size', '1',
                '--no-load-optim',
                '--no-load-rng',
                '--no-save-optim',
                '--no-save-rng',
liangjing's avatar
liangjing committed
64
                '--mock-data', # To pass the "blend data checks" in arguments.py
65
                '--no-initialization',
liangjing's avatar
liangjing committed
66
67
68
                '--load', args.load_dir,
                '--position-embedding-type', args.position_embedding_type,
                '--exit-on-missing-checkpoint',
69
70
                ]

71
    margs = parse_args()
liangjing's avatar
v1  
liangjing committed
72
    margs, checkpoint_args = load_args_from_checkpoint(margs)
73

74
75
76
77
    # Arguments do sanity checks on the world size, but we don't care,
    # so trick it into thinking we are plenty of processes
    margs.world_size = margs.tensor_model_parallel_size * margs.pipeline_model_parallel_size

liangjing's avatar
liangjing committed
78
79
80
81
82
    # Explicitly copy data types from checkpoint.
    margs.fp16 = checkpoint_args.fp16
    margs.bf16 = checkpoint_args.bf16

    # Validate margs.
83
84
    margs = validate_args(margs)

liangjing's avatar
liangjing committed
85
86
87
    margs.use_legacy_models = True
    margs.transformer_impl = args.loader_transformer_impl

liangjing's avatar
v1  
liangjing committed
88
    def check_for_arg(arg_name, default=None):
89
        if getattr(margs, arg_name, None) is None:
liangjing's avatar
v1  
liangjing committed
90
91
92
93
94
95
96
            if default is not None:
                setattr(margs, arg_name, default)
            else:
                print(f"Checkpoint does not specify the argument {arg_name}. Exiting.")
                print(f"Arguments: {margs}")
                queue.put("exit")
                exit(1)
97
98
99
100
101
102
103
104

    check_for_arg('tensor_model_parallel_size')
    check_for_arg('pipeline_model_parallel_size')
    check_for_arg('num_layers')
    check_for_arg('hidden_size')
    check_for_arg('seq_length')
    check_for_arg('num_attention_heads')
    check_for_arg('max_position_embeddings')
liangjing's avatar
v1  
liangjing committed
105
    check_for_arg('position_embedding_type')
106
107
108
    check_for_arg('tokenizer_type')
    check_for_arg('iteration')
    check_for_arg('bert_binary_head')
liangjing's avatar
v1  
liangjing committed
109
    check_for_arg('disable_bias_linear', False)
110
    check_for_arg('params_dtype')
liangjing's avatar
v1  
liangjing committed
111
    check_for_arg('swiglu', False)
112

113
114
115
116
117
118
119
120
121
122
    # Determine how to make our models
    if args.model_type == 'GPT':
        from pretrain_gpt import model_provider
        margs.model_type = ModelType.encoder_or_decoder
    elif args.model_type == 'BERT':
        from pretrain_bert import model_provider
        margs.model_type = ModelType.encoder_or_decoder
    else:
        raise Exception(f'unrecognized model type: {args.model_type}')

123
124
125
    # supress warning about torch.distributed not being initialized
    module.MegatronModule.embedding_warning_printed = True

126
127
    consumed_train_samples = None
    consumed_valid_samples = None
liangjing's avatar
v1  
liangjing committed
128
    def get_models(count, dtype):
129
130
        nonlocal consumed_train_samples
        nonlocal consumed_valid_samples
liangjing's avatar
v1  
liangjing committed
131
132
133
134
135
136
        model_array_len = margs.virtual_pipeline_model_parallel_size
        if model_array_len is None:
            model_array_len = 1
        models = [[] for _ in range(model_array_len)]
        pre_process = mpu.is_pipeline_first_stage()
        post_process = mpu.is_pipeline_last_stage()
137
        for rank in range(count):
138
            mpu.set_tensor_model_parallel_rank(rank)
liangjing's avatar
v1  
liangjing committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
            if margs.virtual_pipeline_model_parallel_size is not None:
                model_ = []
                for i in range(margs.virtual_pipeline_model_parallel_size):
                    mpu.set_virtual_pipeline_model_parallel_rank(i)
                    # Set pre_process and post_process only after virtual rank is set.
                    pre_process = mpu.is_pipeline_first_stage()
                    post_process = mpu.is_pipeline_last_stage()
                    this_model = model_provider(
                        pre_process=pre_process,
                        post_process=post_process
                    ).to(dtype)
                    model_.append(this_model)
            else:
                pre_process = mpu.is_pipeline_first_stage()
                post_process = mpu.is_pipeline_last_stage()
                model_rank = 0
                model_ = [model_provider(pre_process, post_process).to(dtype)]
156
157
            margs.consumed_train_samples = 0
            margs.consumed_valid_samples = 0
liangjing's avatar
liangjing committed
158
            margs.exit_on_missing_checkpoint = True
159
            load_checkpoint(model_, None, None)
liangjing's avatar
v1  
liangjing committed
160

161
162
163
164
165
166
167
168
            if consumed_train_samples is not None:
                assert(margs.consumed_train_samples == consumed_train_samples)
            else:
                consumed_train_samples = margs.consumed_train_samples
            if consumed_valid_samples is not None:
                assert(margs.consumed_valid_samples == consumed_valid_samples)
            else:
                consumed_valid_samples = margs.consumed_valid_samples
liangjing's avatar
v1  
liangjing committed
169
170
            for vp_rank in range(model_array_len):
                models[vp_rank].append(model_[vp_rank])
171
172
        return models

liangjing's avatar
v1  
liangjing committed
173
    set_global_variables(margs, build_tokenizer=False)
174
175
    mpu.set_tensor_model_parallel_world_size(margs.tensor_model_parallel_size)
    mpu.set_pipeline_model_parallel_world_size(margs.pipeline_model_parallel_size)
liangjing's avatar
v1  
liangjing committed
176
    mpu.set_virtual_pipeline_model_parallel_world_size(margs.virtual_pipeline_model_parallel_size)
177
178
    fused_kernels.load(margs)

179
180
181
182
183
184
185
186
187
188
189
190
191
    # Get true (non-padded) vocab size
    if args.true_vocab_size is not None:
        true_vocab_size = args.true_vocab_size
    elif args.vocab_file is not None:
        vocab = json.load(open(args.vocab_file))
        true_vocab_size = len(vocab)
        if args.true_vocab_size is not None and true_vocab_size != args.true_vocab_size:
            print("Both --true-vocab-size and --vocab-file specified and the vocab size does not match, aborting.")
            queue.put("exit")
            exit(1)
    else:
        true_vocab_size = None

192
193
194
    # short aliases
    tp_size = margs.tensor_model_parallel_size
    pp_size = margs.pipeline_model_parallel_size
liangjing's avatar
v1  
liangjing committed
195
196
197
    vp_size = margs.virtual_pipeline_model_parallel_size
    if vp_size is None:
        vp_size = 1
198

liangjing's avatar
liangjing committed
199
200
201
202
203
204
205
    # Layernorm has bias; RMSNorm does not.
    if hasattr(checkpoint_args, 'normalization'):
        norm_has_bias = checkpoint_args.normalization == "LayerNorm"
    else:
        # older models only supported LayerNorm
        norm_has_bias = True

206
207
208
209
210
211
212
213
214
215
216
217
    # metadata
    md = types.SimpleNamespace()
    md.model_type = args.model_type
    md.num_layers = margs.num_layers
    md.hidden_size = margs.hidden_size
    md.seq_length = margs.seq_length
    md.num_attention_heads = margs.num_attention_heads
    md.max_position_embeddings = margs.max_position_embeddings
    md.tokenizer_type = margs.tokenizer_type
    md.iteration = margs.iteration
    md.params_dtype = margs.params_dtype
    md.bert_binary_head = margs.bert_binary_head
liangjing's avatar
v1  
liangjing committed
218
219
220
    md.output_layer = margs.untie_embeddings_and_output_weights
    md.position_embedding_type = margs.position_embedding_type
    md.linear_bias = margs.add_bias_linear
liangjing's avatar
liangjing committed
221
    md.norm_has_bias = norm_has_bias
liangjing's avatar
v1  
liangjing committed
222
    md.swiglu = margs.swiglu
223
224
    md.previous_tensor_parallel_size = margs.tensor_model_parallel_size
    md.previous_pipeline_parallel_size = margs.pipeline_model_parallel_size
225
226
    md.true_vocab_size = true_vocab_size
    md.make_vocab_size_divisible_by = margs.make_vocab_size_divisible_by
liangjing's avatar
v1  
liangjing committed
227
    md.checkpoint_args = checkpoint_args
228
229

    # Get first pipe stage
230
    mpu.set_pipeline_model_parallel_rank(0)
liangjing's avatar
v1  
liangjing committed
231
232
    all_models = [get_models(tp_size, md.params_dtype)]
    models = all_models[0][0]
233

234
235
236
237
    md.consumed_train_samples = consumed_train_samples
    md.consumed_valid_samples = consumed_valid_samples
    queue.put(md)

238
239
240
241
    def queue_put(name, msg):
        print(f"sending {name}")
        msg["name"] = name
        queue.put(msg)
242

243
244
245
246
247
248
    # Send embeddings
    message = {
        "word embeddings": torch.cat(
            [models[tp_rank].language_model.embedding.word_embeddings.weight.data for tp_rank in range(tp_size)],
            dim = 0)
    }
liangjing's avatar
v1  
liangjing committed
249
250
251
252
    if md.position_embedding_type == 'learned_absolute':
        message["position embeddings"] = models[0].language_model.embedding.position_embeddings.weight.data
    else:
        assert not hasattr(models[0].language_model.embedding, 'position_embeddings')
253

254
    queue_put("embeddings", message)
255
256

    total_layer_num = 0
liangjing's avatar
v1  
liangjing committed
257
258
259
260
261
262
263
264
265
266
267
268
269
    for vp_rank in range(vp_size):
        mpu.set_virtual_pipeline_model_parallel_rank(vp_rank)
        for pp_rank in range(pp_size):
            if pp_rank > 0:
                mpu.set_pipeline_model_parallel_rank(pp_rank)
                if vp_rank == 0:
                    all_models.append(get_models(tp_size, md.params_dtype))
            models = all_models[pp_rank][vp_rank]
            for layer_num in range(len(models[0].language_model.encoder.layers)):
                message = {}

                # Get non-parallel tensors from tp_rank 0
                layer = models[0].language_model.encoder.layers[layer_num]
liangjing's avatar
liangjing committed
270
271
272
273
274
275
                message["input norm weight"] = layer.input_norm.weight.data
                if norm_has_bias:
                    message["input norm bias"] = layer.input_norm.bias.data
                message["post norm weight"] = layer.post_attention_norm.weight.data
                if norm_has_bias:
                    message["post norm bias"] = layer.post_attention_norm.bias.data
liangjing's avatar
v1  
liangjing committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
                if md.linear_bias:
                    message["dense bias"] = layer.self_attention.dense.bias.data
                    message["mlp l1 bias"] = layer.mlp.dense_4h_to_h.bias.data

                # Grab all parallel tensors for this layer
                qkv_weight = []
                qkv_bias = []
                dense_weight = []
                mlp_l0_weight = []
                mlp_l0_bias = []
                mlp_l1_weight = []
                for tp_rank, model in enumerate(models):
                    layer = model.language_model.encoder.layers[layer_num]
                    qkv_weight.append(layer.self_attention.query_key_value.weight.data)
                    dense_weight.append(layer.self_attention.dense.weight.data)
                    mlp_l0_weight.append(layer.mlp.dense_h_to_4h.weight.data)
                    mlp_l1_weight.append(layer.mlp.dense_4h_to_h.weight.data)
                    if md.linear_bias:
                        qkv_bias.append(layer.self_attention.query_key_value.bias.data)
                        mlp_l0_bias.append(layer.mlp.dense_h_to_4h.bias.data)

                # Handle gated linear units
                if md.swiglu:
                    # concat all the first halves ('W's) and all the second halves ('V's)
                    for tp_rank in range(tp_size):
                        mlp_l0_weight[tp_rank] = torch.chunk(mlp_l0_weight[tp_rank], 2, dim=0)
                    message["mlp l0 weight W"] = torch.cat([w[0] for w in mlp_l0_weight], dim=0)
                    message["mlp l0 weight V"] = torch.cat([w[1] for w in mlp_l0_weight], dim=0)
                else:
                    message["mlp l0 weight"] = torch.cat(mlp_l0_weight, dim=0)

                # simple concat of the rest
                message["qkv weight"] = torch.cat(qkv_weight, dim=0)
                message["dense weight"] = torch.cat(dense_weight, dim=1)
                message["mlp l1 weight"] = torch.cat(mlp_l1_weight, dim=1)
                if md.linear_bias:
                    message["qkv bias"] = torch.cat(qkv_bias, dim=0)
                    if md.swiglu:
                        for tp_rank in range(tp_size):
                            mlp_l0_bias[tp_rank] = torch.chunk(mlp_l0_bias[tp_rank], 2, dim=0)
                        message["mlp l0 bias W"] = torch.cat([b[0] for b in mlp_l0_bias],dim=0)
                        message["mlp l0 bias V"] = torch.cat([b[1] for b in mlp_l0_bias],dim=0)
                    else:
                        message["mlp l0 bias"] = torch.cat(mlp_l0_bias, dim=0)

                queue_put(f"transformer layer {total_layer_num}", message)

                total_layer_num = total_layer_num + 1
324

liangjing's avatar
liangjing committed
325
    # Send final norm from tp_rank 0
326
    message = {
liangjing's avatar
liangjing committed
327
        "weight": models[0].language_model.encoder.final_norm.weight.data,
328
    }
liangjing's avatar
liangjing committed
329
330
331
    if norm_has_bias:
        message["bias"] = models[0].language_model.encoder.final_norm.bias.data
    queue_put("final norm", message)
332

liangjing's avatar
v1  
liangjing committed
333
334
335
336
337
338
339
340
341
    if md.output_layer:
        message = {
            "weight": torch.cat(
                [models[tp_rank].language_model.output_layer.weight.data for tp_rank in range(tp_size)],
                dim = 0)
        }
        queue_put("output layer", message)


342
343
    # Send BERT lm head and binary head if it exists
    if md.model_type == 'BERT':
344
345
346
347
348
349
350
351
352
        message = {
            "weight": models[0].language_model.pooler.dense.weight.data,
            "bias": models[0].language_model.pooler.dense.bias.data
        }
        queue_put("pooler", message)

        message = {
            "dense weight": models[0].lm_head.dense.weight.data,
            "dense bias": models[0].lm_head.dense.bias.data,
liangjing's avatar
liangjing committed
353
            "norm weight": models[0].lm_head.norm.weight.data,
354
        }
liangjing's avatar
liangjing committed
355
356
        if norm_has_bias:
            message["norm bias"] = models[0].lm_head.norm.bias.data
357
        queue_put("lm head", message)
358
359

        if md.bert_binary_head:
360
361
362
363
364
            message = {
                "weight": models[0].binary_head.weight.data,
                "bias": models[0].binary_head.bias.data
            }
            queue_put("binary head", message)
365
366
367
368
369
    queue.put("done")

def load_checkpoint(queue, args):
    try:
        _load_checkpoint(queue, args)
liangjing's avatar
liangjing committed
370
    except Exception:
371
372
        queue.put("exit")
        raise