test_t5_model.py 9.66 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.

from copy import deepcopy

import pytest
import torch

import megatron.core.parallel_state as ps
from megatron.core.models.T5.t5_model import T5Model
from megatron.core.models.T5.t5_spec import (
    get_t5_decoder_with_local_block_spec,
    get_t5_decoder_with_transformer_engine_block_spec,
    get_t5_encoder_with_local_block_spec,
    get_t5_encoder_with_transformer_engine_block_spec,
)
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
from megatron.core.transformer.transformer_config import TransformerConfig
from tests.unit_tests.test_utilities import Utils


class TestT5Model:

    def setup_method(self, method):
        tp = 4
        pp = 1
        Utils.initialize_model_parallel(
            tensor_model_parallel_size=tp,
            pipeline_model_parallel_size=pp,
            encoder_pipeline_model_parallel_size=pp,
        )
        model_parallel_cuda_manual_seed(123)
        transformer_config = TransformerConfig(
            num_layers=12,
            hidden_size=768,
            num_attention_heads=12,
            kv_channels=64,
            ffn_hidden_size=3072,
            use_cpu_initialization=True,
            pipeline_dtype=torch.bfloat16,
            tensor_model_parallel_size=tp,
            pipeline_model_parallel_size=pp,
        )
        rank = ps.get_pipeline_model_parallel_rank()
        world_size = ps.get_pipeline_model_parallel_world_size()
        en_block_spec = get_t5_encoder_with_transformer_engine_block_spec(12)
        de_block_spec = get_t5_decoder_with_transformer_engine_block_spec(12)

        first_decoder_rank = pp
        pre_process = rank == 0 or rank == first_decoder_rank
        post_process = (rank == (first_decoder_rank - 1)) or (rank == (world_size - 1))
        add_encoder = ps.is_inside_encoder(rank)
        add_decoder = ps.is_inside_decoder(rank)

        self.t5_model = T5Model(
            encoder_config=transformer_config,
            config=transformer_config,
            transformer_encoder_layer_spec=en_block_spec,
            transformer_decoder_layer_spec=de_block_spec,
            vocab_size=29184,
            max_sequence_length=4,
            pre_process=pre_process,
            post_process=post_process,
            add_encoder=add_encoder,
            add_decoder=add_decoder,
        )

    def teardown_method(self, method):
        Utils.destroy_model_parallel()

    def test_constructor(self):
        assert isinstance(self.t5_model, T5Model)
        assert Utils.world_size == 8

        assert self.t5_model.max_sequence_length == 4
        if self.t5_model.add_encoder:
            assert not self.t5_model.add_decoder
            assert self.t5_model.encoder.num_layers_per_pipeline_rank == 12
            assert self.t5_model.pre_process
            assert self.t5_model.post_process
        else:
            assert self.t5_model.add_decoder
            assert self.t5_model.decoder.num_layers_per_pipeline_rank == 12
            assert self.t5_model.pre_process
            assert self.t5_model.post_process

    def test_set_input_tensor(self):
        config: TransformerConfig = self.t5_model.config
        sequence_length = self.t5_model.max_sequence_length
        micro_batch_size = 2

        # [sequence length, batch size, hidden size]
        input_tensor = torch.ones((sequence_length, micro_batch_size, config.hidden_size))

        self.t5_model.set_input_tensor(input_tensor)

        if self.t5_model.add_encoder:
            assert self.t5_model.encoder.input_tensor.shape[0] == sequence_length
            assert self.t5_model.encoder.input_tensor.shape[1] == micro_batch_size
            assert self.t5_model.encoder.input_tensor.shape[2] == config.hidden_size
        else:
            assert self.t5_model.encoder is None
            assert self.t5_model.encoder_hidden_state.shape[0] == sequence_length
            assert self.t5_model.encoder_hidden_state.shape[1] == micro_batch_size
            assert self.t5_model.encoder_hidden_state.shape[2] == config.hidden_size

    def test_post_process_forward(self):
        config: TransformerConfig = self.t5_model.config
        sequence_length = self.t5_model.max_sequence_length
        micro_batch_size = 2

        self.t5_model.cuda()

        data = list(range(sequence_length))
        encoder_input_ids = (
            torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        )
        decoder_input_ids = (
            torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        )
        encoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()
        decoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()
        encoder_decoder_attn_mask = torch.ones(
            (1, sequence_length, sequence_length), dtype=bool
        ).cuda()

        if self.t5_model.add_decoder:
            encoder_hidden_states = torch.zeros(
                (sequence_length, micro_batch_size, config.hidden_size), dtype=torch.float32
            ).cuda()
        else:
            encoder_hidden_states = None

        output = self.t5_model.forward(
            encoder_input_ids=encoder_input_ids,
            decoder_input_ids=decoder_input_ids,
            encoder_attn_mask=encoder_attn_mask,
            decoder_attn_mask=decoder_attn_mask,
            encoder_decoder_attn_mask=encoder_decoder_attn_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        if self.t5_model.add_decoder:
            logits = output
            assert logits.shape[0] == micro_batch_size
            assert logits.shape[1] == sequence_length
            assert (
                logits.shape[2]
                == self.t5_model.vocab_size // ps.get_tensor_model_parallel_world_size()
            )
        else:
            encoder_hidden_states = output
            assert encoder_hidden_states.shape[0] == sequence_length
            assert encoder_hidden_states.shape[1] == micro_batch_size
            assert encoder_hidden_states.shape[2] == config.hidden_size

    def test_forward_output_encoder_hidden_only(self):
        config: TransformerConfig = self.t5_model.config
        sequence_length = self.t5_model.max_sequence_length
        micro_batch_size = 2

        self.t5_model.cuda()

        data = list(range(sequence_length))
        encoder_input_ids = (
            torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        )
        decoder_input_ids = (
            torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        )
        encoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()
        decoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()
        encoder_decoder_attn_mask = torch.ones(
            (1, sequence_length, sequence_length), dtype=bool
        ).cuda()

        encoder_hidden_states = self.t5_model.forward(
            encoder_input_ids=encoder_input_ids,
            decoder_input_ids=decoder_input_ids,
            encoder_attn_mask=encoder_attn_mask,
            decoder_attn_mask=decoder_attn_mask,
            encoder_decoder_attn_mask=encoder_decoder_attn_mask,
            output_encoder_hidden_only=True,
        )
        if self.t5_model.add_decoder:
            assert encoder_hidden_states is None
        else:
            assert encoder_hidden_states.shape[0] == sequence_length
            assert encoder_hidden_states.shape[1] == micro_batch_size
            assert encoder_hidden_states.shape[2] == config.hidden_size

    def test_forward_with_encoder_hidden_states(self):
        config: TransformerConfig = self.t5_model.config
        sequence_length = self.t5_model.max_sequence_length
        micro_batch_size = 2

        self.t5_model.cuda()

        data = list(range(sequence_length))
        encoder_input_ids = (
            torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        )
        decoder_input_ids = (
            torch.tensor(data, dtype=torch.int64).repeat((micro_batch_size, 1)).cuda()
        )
        encoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()
        decoder_attn_mask = torch.ones((1, sequence_length, sequence_length), dtype=bool).cuda()
        encoder_decoder_attn_mask = torch.ones(
            (1, sequence_length, sequence_length), dtype=bool
        ).cuda()
        encoder_hidden_states = torch.zeros(
            (sequence_length, micro_batch_size, config.hidden_size), dtype=torch.float32
        ).cuda()

        output = self.t5_model.forward(
            encoder_input_ids=None,
            decoder_input_ids=decoder_input_ids,
            encoder_attn_mask=encoder_attn_mask,
            decoder_attn_mask=decoder_attn_mask,
            encoder_decoder_attn_mask=encoder_decoder_attn_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        if self.t5_model.add_decoder:
            logits = output
            assert logits.shape[0] == micro_batch_size
            assert logits.shape[1] == sequence_length
            assert (
                logits.shape[2]
                == self.t5_model.vocab_size // ps.get_tensor_model_parallel_world_size()
            )
        else:
            encoder_hidden_states = output
            assert encoder_hidden_states.shape[0] == sequence_length
            assert encoder_hidden_states.shape[1] == micro_batch_size
            assert encoder_hidden_states.shape[2] == config.hidden_size

    def test_no_post_process_forward(self):
        pass

    def test_no_preprocess_forward(self):
        pass

    def test_state_dict_for_save_checkpoint(self):
        pass

    def test_load_state_dict(self):
        pass