mapping.py 27.8 KB
Newer Older
liangjing's avatar
v1  
liangjing committed
1
2
# Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.

liangjing's avatar
liangjing committed
3
""" Core library classes for representing sharding of tensors and objects.
liangjing's avatar
v1  
liangjing committed
4

liangjing's avatar
liangjing committed
5
6
7
8
9
10
11
The main expected usage is wrapping torch.Tensors in state dicts with
ShardedTensor class (mostly with the ShardedTensor.from_rank_offsets classmethod).
"""

import logging
from abc import ABC, abstractmethod
from dataclasses import dataclass, field, replace
liangjing's avatar
v1  
liangjing committed
12
from itertools import chain
liangjing's avatar
liangjing committed
13
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
liangjing's avatar
v1  
liangjing committed
14
15
16
17
18

import numpy as np
import torch

from .core import CheckpointingException
liangjing's avatar
liangjing committed
19
20
21
from .dict_utils import dict_list_map_inplace

logger = logging.getLogger(__name__)
liangjing's avatar
v1  
liangjing committed
22
23
24
25
26
27
28
29
30

# These type definitions are just hints to differentiate a plain model state
#  dict (StateDict) from a state dict with tensors replaced with ShardedTensors
#  (ShardedStateDict).
StateDict = Dict[str, Any]
ShardedStateDict = Dict[str, Any]
ReplicaId = Union[int, Tuple[int, ...]]


liangjing's avatar
liangjing committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class ShardedBase(ABC):
    """Base class for ShardedTensor and ShardedStateDict."""

    key: str
    data: object
    replica_id: ReplicaId

    @abstractmethod
    def validate_metadata_integrity(self):
        """Codifies the constraints on metadata attributes."""

    @abstractmethod
    def without_data(self) -> 'ShardedBase':
        """Returns a new ShardedBase instance with data=None."""
        raise NotImplementedError


liangjing's avatar
v1  
liangjing committed
48
@dataclass
liangjing's avatar
liangjing committed
49
class ShardedTensor(ShardedBase):
liangjing's avatar
v1  
liangjing committed
50
51
52
53
54
    """Represents a mapping between a local tensor and a global tensor.

    Global tensor is assumed to consist of many local tensors distributed
    between different processes.

liangjing's avatar
liangjing committed
55
    Args:
liangjing's avatar
v1  
liangjing committed
56
57
58
59
60
        key: unique identifier of a global tensor
        data: local tensor data. Can be None only for consistency validation
        dtype: tensor dtype
        local_shape: local tensor shape
        global_shape: global tensor shape
liangjing's avatar
liangjing committed
61
62
        global_offset: offset of a local tensor in a global tensor,
            specified in number of tensor elements
liangjing's avatar
v1  
liangjing committed
63
        axis_fragmentations: global tensor fragmentation of each axis
liangjing's avatar
liangjing committed
64
65
66
67
68
69
70
71
72
73
74
75
        replica_id: indicates given local tensor's replication wrt.
            local tensors in different processes
        prepend_axis_num: number of axes prepended to the local tensor to
            reflect global tensor shape. The behavior is similar to
            unsqueezing the local tensor.
        allow_shape_mismatch: if True, during loading, the global shape of
            a stored tensor does not have to match the expected global shape.
            Useful for representing tensors with flexible shape,
            e.g. padded.
        flattened_range: specifies a slice that should be applied to a
            flattened tensor with `local_shape` in order to get
            the tensor stored as `data`
liangjing's avatar
v1  
liangjing committed
76
77
78
    """

    key: str
liangjing's avatar
liangjing committed
79
    data: Optional[torch.Tensor] = field(repr=False)
liangjing's avatar
v1  
liangjing committed
80
81
82
83
84
85
86
87
88
89
    dtype: torch.dtype
    local_shape: Tuple[int, ...]
    global_shape: Tuple[int, ...]
    global_offset: Tuple[int, ...]
    axis_fragmentations: Optional[Tuple[int, ...]]
    replica_id: ReplicaId = 0
    prepend_axis_num: int = 0
    allow_shape_mismatch: bool = False
    flattened_range: Optional[slice] = None

liangjing's avatar
liangjing committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    def __post_init__(self):
        self.validate_metadata_integrity()

    def validate_metadata_integrity(self) -> None:
        """Codifies the constraints on metadata attributes.

        Meeting those constraints is guaranteed when instantiating a ShardedTensor
        class with `from_rank_offsets` or `from_rank_offsets_flat` constructors.

        Returns:
            None
        """
        has_flattened_range = self.flattened_range is not None
        if self.data is not None:
            if self.data.dtype != self.dtype:
                raise CheckpointingException(
                    f'Data dtype should match `dtype` attribute for {self}'
                )
            if not has_flattened_range and self.data.shape != self.local_shape:
                raise CheckpointingException(
                    f'Data shape should match `local_shape` attribute for {self}'
                )
            if has_flattened_range:
                if self.data.ndim != 1:
                    raise CheckpointingException(f'Data should be 1D for a flattened {self}')
                real_data = self.data
                try:
                    self.data = None
                    self.init_data(device='meta')
                    if self.data.shape != real_data.shape:
                        raise CheckpointingException(
                            f'Data shape doesnt match expected {self.data.shape} for {self}'
                        )
                finally:
                    self.data = real_data

        if len(self.global_shape) != len(self.global_offset):
            raise CheckpointingException(
                f'Global offset dimensions should be equal to global shape dimensions for {self}'
            )
        if len(self.local_shape) + self.prepend_axis_num != len(self.global_shape):
            raise CheckpointingException(
                f'Local shape together with `prepend_axis_num` dimensions should be '
                f'equal to global shape dimensions for {self}'
            )

        for off, sh in zip(self.global_offset[self.prepend_axis_num :], self.local_shape):
            if off % sh != 0:
                raise CheckpointingException(
                    f'Global offset ({off}) must be divisible by local shape ({sh}) for {self}.'
                )

        if has_flattened_range and self.flattened_range.step is not None:
            raise CheckpointingException(
                f'`step` argument in the flattened range of a ShardedTensor is not supported.'
            )

liangjing's avatar
v1  
liangjing committed
147
    def global_slice(self) -> Tuple[Union[int, slice], ...]:
liangjing's avatar
liangjing committed
148
149
150
151
        """
        Returns a tuple of int and slice objects representing a slice of the
        global tensor that this ShardedTensor corresponds to.
        """
liangjing's avatar
v1  
liangjing committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        assert len(self.global_offset) == len(self.local_shape) + self.prepend_axis_num
        return tuple(
            chain(
                (off for off in self.global_offset[: self.prepend_axis_num]),
                (
                    slice(off, off + sh)
                    for off, sh in zip(
                        self.global_offset[self.prepend_axis_num :], self.local_shape
                    )
                ),
            )
        )

    def global_coordinates(self) -> Tuple[np.ndarray, ...]:
liangjing's avatar
liangjing committed
166
167
168
169
        """
        Returns a tuple of np.ndarrays representing the coordinates of the global tensor
        that this ShardedTensor corresponds to.
        """
liangjing's avatar
v1  
liangjing committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        if self.flattened_range is None:
            raise CheckpointingException(
                f'`global_coordinates` is undefined for'
                f' {self.__class__.__name__} without `flattened_range`'
            )

        local_coords = self.local_coordinates()
        assert len(local_coords) + self.prepend_axis_num == len(self.global_offset), (
            len(local_coords),
            self,
        )
        global_coords = tuple(
            c + off
            for c, off in zip((0,) * self.prepend_axis_num + local_coords, self.global_offset)
        )
        return global_coords

    def local_coordinates(self) -> Tuple[np.ndarray, ...]:
liangjing's avatar
liangjing committed
188
189
190
191
        """
        Returns a tuple of np.ndarrays representing the coordinates of the local tensor
        that this ShardedTensor corresponds to.
        """
liangjing's avatar
v1  
liangjing committed
192
193
194
195
196
197
198
199
200
201
202
        if self.flattened_range is None:
            raise CheckpointingException(
                f'`local_coordinates` is undefined for'
                f' {self.__class__.__name__} without `flattened_range`'
            )

        # TODO: np.unravel_index?
        mask = np.zeros(np.product(self.local_shape), dtype=bool)
        mask[self.flattened_range] = True
        return np.nonzero(mask.reshape(self.local_shape))

liangjing's avatar
liangjing committed
203
204
205
206
207
208
209
210
211
212
213
214
215
    def local_chunk_offset_in_global(self) -> Tuple[int, ...]:
        """Offset of a local chunk in a global array of chunks.

        Returns:
            Tuple[int, ...]: the offset of the whole local chunk in a global array of chunks.
        """
        assert len(self.global_offset) == len(self.local_shape) + self.prepend_axis_num
        chunk_offset = list(self.global_offset[: self.prepend_axis_num])
        for off, sh in zip(self.global_offset[self.prepend_axis_num :], self.local_shape):
            assert off % sh == 0, str(self)
            chunk_offset.append(off // sh)
        return tuple(chunk_offset)

liangjing's avatar
v1  
liangjing committed
216
    def max_allowed_chunks(self) -> Tuple[int, ...]:
liangjing's avatar
liangjing committed
217
218
219
        """
        Returns the maximum allowed chunks for this ShardedTensor.
        """
liangjing's avatar
v1  
liangjing committed
220
221
222
223
        chunks = []
        for axis_sh, axis_fragm in zip(self.global_shape, self.axis_fragmentations):
            if not self.allow_shape_mismatch and axis_sh % axis_fragm != 0:
                raise CheckpointingException(
liangjing's avatar
liangjing committed
224
                    f'Axis shape ({axis_sh}) not divisible by axis fragmentation ({axis_fragm}'
liangjing's avatar
v1  
liangjing committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
                )
            axis_chunk_size = axis_sh // axis_fragm
            chunks.append(axis_chunk_size)
        return tuple(chunks)

    def without_data(self):
        return replace(self, data=None)

    @classmethod
    def from_rank_offsets(
        cls,
        key: str,
        data: torch.Tensor,
        *rank_offsets: Tuple[int, int, int],
        replica_id: ReplicaId = 0,
        prepend_axis_num: int = 0,
liangjing's avatar
liangjing committed
241
242
        flattened_range: None = None,
        **init_kwargs,
liangjing's avatar
v1  
liangjing committed
243
244
    ):
        """Allows to construct the ShardedTensor given offset specified in process ranks.
liangjing's avatar
liangjing committed
245
246
247
248
249
250
251
252
253
254
255
256

        Args:
            key (str): unique key
            data (torch.Tensor): local tensor data
            rank_offsets (Tuple[int, int, int]): each tuple
                (axis, axis_rank_offset, axis_fragm) says that if
                global tensor is divided into `axis_fragm` fragment along `axis`
                axis, then local tensor data corresponds to the `axis_rank_offset` chunk.
            replica_id (ReplicaId): see ShardedTensor
            prepend_axis_num (int): see ShardedTensor
            flattened_range (None): must be None when using this constructor
            init_kwargs: passed to ShardedTensor.__init__
liangjing's avatar
v1  
liangjing committed
257
        """
liangjing's avatar
liangjing committed
258
259
260
261
262
        if flattened_range is not None:
            raise ValueError(
                'Cannot instantiate a flat ShardedTensor with `from_rank_offsets` method.'
                ' Use `from_rank_offsets_flat` instead'
            )
liangjing's avatar
v1  
liangjing committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        global_offset = [0] * (data.ndim + prepend_axis_num)
        global_shape = ([1] * prepend_axis_num) + list(data.shape)
        axis_fragmentations = [1] * (data.ndim + prepend_axis_num)
        _seen_axis = set()
        for axis, axis_rank_offset, axis_fragm in rank_offsets:
            assert axis >= 0 and axis_rank_offset >= 0 and axis_fragm >= 0, (
                axis,
                axis_rank_offset,
                axis_fragm,
            )
            assert (
                axis_rank_offset < axis_fragm
            ), 'Rank offset must be lower than axis fragmentation'
            if axis in _seen_axis:
                raise CheckpointingException('Duplicated axis specified')
            _seen_axis.add(axis)

            local_axis_shape = 1 if axis < prepend_axis_num else data.shape[axis - prepend_axis_num]
            global_shape[axis] = axis_fragm * local_axis_shape
            global_offset[axis] = axis_rank_offset * local_axis_shape
            axis_fragmentations[axis] = axis_fragm

        return cls(
            key,
            data,
            data.dtype,
            tuple(data.shape),
            tuple(global_shape),
            tuple(global_offset),
            tuple(axis_fragmentations),
            replica_id,
            prepend_axis_num,
liangjing's avatar
liangjing committed
295
296
            flattened_range=flattened_range,
            **init_kwargs,
liangjing's avatar
v1  
liangjing committed
297
298
        )

liangjing's avatar
liangjing committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    @classmethod
    def from_rank_offsets_flat(
        cls,
        key: str,
        data: torch.Tensor,
        non_flat_local_shape: Tuple[int, ...],
        *args,
        flattened_range: Optional[slice] = None,
        **kwargs,
    ):
        """Allows to construct a *flattened* ShardedTensor given offset specified in process ranks.

        Args:
            key (str):
            data (torch.Tensor): this should be a flattened data tensor
            non_flat_local_shape (Tuple[int, ...]): expected local shape of a non-flat chunk
            *args: passed unchanged to the `from_rank_offsets` constructor
            flattened_range (slice): see ShardedTensor. Defaults to None, but must be set to
                a non-None slice.
            **kwargs:

        Returns:
            ShardedTensor: constructed ShardedTensor instance
        """
        if flattened_range is None:
            raise CheckpointingException(
                'Cannot instantiate a non-flat ShardedTensor with `from_rank_offsets_flat` method.'
                ' Use `from_rank_offsets` instead'
            )
        if data.ndim != 1:
            raise CheckpointingException(
                f'Flattened ShardedTensor requires 1D data, got shape: {data.shape}'
            )
        if flattened_range.stop - flattened_range.start != data.numel():
            raise CheckpointingException(
                f'Flattened ShardedTensor data length ({data.numel()}) must meet the '
                f'slice length: {flattened_range.stop - flattened_range.start}'
            )
liangjing's avatar
v1  
liangjing committed
337

liangjing's avatar
liangjing committed
338
339
340
341
342
        non_flat_data_meta = torch.empty(*non_flat_local_shape, dtype=data.dtype, device='meta')
        sh_ten = cls.from_rank_offsets(key, non_flat_data_meta, *args, **kwargs)
        instance = replace(sh_ten, data=data, flattened_range=flattened_range)
        instance.validate_metadata_integrity()
        return instance
liangjing's avatar
v1  
liangjing committed
343

liangjing's avatar
liangjing committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    def init_data(self, device: Union[str, torch.device], init_fn=torch.empty):
        """
        Initialize the tensor data of this ShardedTensor.

        Only called if `data` attribute is None.

        Args:
            device (Union[str, torch.device]): device to place the tensor on
            init_fn (Callable, optional): function to use to initialize the tensor.
                Defaults to `torch.empty`.
        """
        if self.data is not None:
            return
        self.data = init_fn(self.local_shape, dtype=self.dtype, device=device)
        if self.flattened_range is not None:
            self.data = self.data.flatten()[self.flattened_range.start : self.flattened_range.stop]

    def narrow(self, dim: int, start: int, length: int) -> List['ShardedTensor']:
        """This is an analogue of torch.narrow for ShardedTensors.

        Narrowing assumes that we narrow a local tensor on each rank.
        This has consequences on local_shape, global_shape, global_offset, etc.

        Args:
            dim (int): dimension to narrow. Doesn't include prepended axes.
            start (int): start element
            length (int): length of the slice

        Returns:
            List[ShardedTensor]: narrowed ShardedTensors. For non-flat tensors,
                the list will always have 1 element. For flat ShardedTensors the number of
                elements varies depending on `dim` and on overlap, because flat
                tensors must be contiguous. In particular the list can be empty.
        """
        prepended_dim = dim + self.prepend_axis_num
        local_length_along_dim = self.local_shape[dim]

        def _update_tuple(x, ind, val):
            x = list(x)
            x[ind] = val
            return tuple(x)

        def _safe_div(x, y):
            assert x % y == 0, (x, y)
            return x // y

        # Decrease global shape and global offset by `length / local_length_along_dim`
        assert (
            self.global_shape[prepended_dim] % local_length_along_dim == 0
        ), f'Only regular grid of local tensors is supported for narrowing, got: {self}'
        assert (
            self.global_offset[prepended_dim] % local_length_along_dim == 0
        ), f'Only regular grid of local tensors is supported for narrowing, got: {self}'
        global_shape = _update_tuple(
            self.global_shape,
            prepended_dim,
            _safe_div(self.global_shape[prepended_dim] * length, local_length_along_dim),
        )
        global_offset = _update_tuple(
            self.global_offset,
            prepended_dim,
            _safe_div(self.global_offset[prepended_dim] * length, local_length_along_dim),
        )

        if self.flattened_range is None:
            new_data = self.data.narrow(dim, start, length)
            # always a single result tensor
            return [
                replace(
                    self,
                    data=new_data,
                    local_shape=new_data.shape,
                    global_shape=global_shape,
                    global_offset=global_offset,
                )
            ]
        else:
            if dim != 0:
                raise CheckpointingException(
                    f'Narrowing along the first axis is supported for now only, got dim={dim}'
                )

            # If dim=0, we will always get 0 or 1 resulting tensor.
            # If dim>1, in general there can be more result tensors (e.g. max 3 for dim=1)

            # For on original flat ShardedTensor of local shape [3, 4] and
            # flattened_range=slice(5, 10),
            # the X signs mark the actual (flat) data in `self.data`
            # notice 12 (3*4) total "virtual" elements, out of which 5 is actual data.
            # flat original: [.....XXXXX..]

            # If we narrow to start=1, length=1 in the original local shape dimensions,
            # the overlapping flat slice would be:
            # narrow to:     [....XXXX....]
            # flat overlap:  [.....XXX....]

            # Now `data` is flattened and sliced, so we must compute local_shape manually
            local_shape = _update_tuple(self.local_shape, dim, length)
            other_dims_volume = np.prod(
                _update_tuple(local_shape, dim, 1)
            )  # 4 in the example above
            volume_before_split = other_dims_volume * start  # 4 in the example above
            volume_of_split = other_dims_volume * length  # 4 in the example above

            flat_slice_start_shifted = (
                self.flattened_range.start - volume_before_split
            )  # 5 - 4 = 1 in the example above
            flat_slice_stop_shifted = (
                self.flattened_range.stop - volume_before_split
            )  # 10 - 4 = 6 in the example above

            # Find an intersection of
            # (flat_slice_start_shifted, flat_slice_stop_shifted) vs (0, volume_of_split)

            if flat_slice_stop_shifted <= 0 or flat_slice_start_shifted >= volume_of_split:
                return []  # no intersection

            # new_flattened_range = slice(1, 4) in the example above
            new_flattened_range = slice(
                max(flat_slice_start_shifted, 0), min(flat_slice_stop_shifted, volume_of_split)
            )
            # Apply the intersection to the flattened data tensor.
            # Compute start and slice appropriate length
            intersection_slice_start = (
                new_flattened_range.start - flat_slice_start_shifted
            )  # 0 in the example above
            new_data = self.data[
                intersection_slice_start : intersection_slice_start
                + new_flattened_range.stop
                - new_flattened_range.start
            ]

            return [
                replace(
                    self,
                    data=new_data,
                    local_shape=local_shape,
                    global_shape=global_shape,
                    global_offset=global_offset,
                    flattened_range=new_flattened_range,
                )
            ]


def is_main_replica(replica_id: ReplicaId):
    """Checks if given `replica_id` is considered as main.

    "Main" replica is:
    - integer 0
    - or an iterable with all 0 elements

    It is the application responsibility to set correct replicas for sharded tensors.

    Args:
        replica_id (Union[int, Tuple[int, ...]]): replica id

    Returns:
        (bool): True for a "main" replica
    """
liangjing's avatar
v1  
liangjing committed
503
504
505
506
507
    if isinstance(replica_id, int):
        return replica_id == 0
    return all(r == 0 for r in replica_id)


liangjing's avatar
liangjing committed
508
class LocalNonpersistentObject:
liangjing's avatar
v1  
liangjing committed
509
510
    """Object that should not be stored in a checkpoint, but restored locally.

liangjing's avatar
liangjing committed
511
    Wrapping any object inside the state dict with LocalNonpersistentObject
liangjing's avatar
v1  
liangjing committed
512
513
514
515
516
517
518
519
520
    will result in:
    - during saving, this object will *not* be stored in the checkpoint
    - during loading, a local version of this object will be placed in a state dict
    """

    def __init__(self, obj):
        self.obj = obj

    def unwrap(self):
liangjing's avatar
liangjing committed
521
        """Returns the original object."""
liangjing's avatar
v1  
liangjing committed
522
523
524
        return self.obj


liangjing's avatar
liangjing committed
525
526
527
528
# TODO: Delete once NeMo fixes typo.
LocalNonpersitentObject = LocalNonpersistentObject


liangjing's avatar
v1  
liangjing committed
529
@dataclass
liangjing's avatar
liangjing committed
530
class ShardedObject(ShardedBase):
liangjing's avatar
v1  
liangjing committed
531
532
533
534
535
536
537
538
539
    """Represents a mapping between a local object and a global object.

    Global object is assumed to consist of many local objects distributed
    between different processes.

    NOTE: Contrary to ShardedTensor, it's impossible to change global object
    sharding. Conceptually, ShardedObject is a fully-sharded ShardedTensor
    with atomic arbitrary typed elements.

liangjing's avatar
liangjing committed
540
    Args:
liangjing's avatar
v1  
liangjing committed
541
542
543
        key: unique identifier of a global tensor
        data: local object data. Can be None only for consistency validation
        global_shape: global object shape
liangjing's avatar
liangjing committed
544
545
        global_offset: offset of a local object in a global object, specified in number of shards
        replica_id: indicates local object replication wrt. local objects in different processes
liangjing's avatar
v1  
liangjing committed
546
547
548
549
550
551
552
553
    """

    key: str
    data: object
    global_shape: Tuple[int, ...]
    global_offset: Tuple[int, ...]
    replica_id: ReplicaId = 0

liangjing's avatar
liangjing committed
554
555
556
557
558
559
560
561
562
    def __post_init__(self):
        self.validate_metadata_integrity()

    def validate_metadata_integrity(self):
        if len(self.global_shape) != len(self.global_offset):
            raise CheckpointingException(
                f'Global offset dimensions should be equal to global shape dimensions for {self}'
            )

liangjing's avatar
v1  
liangjing committed
563
564
565
566
567
    def without_data(self):
        return replace(self, data=None)

    @property
    def unique_key(self):
liangjing's avatar
liangjing committed
568
569
570
571
572
573
        """returns a unique key for this object"""
        return (
            f'{self.key}/shard_'
            f'{".".join(map(str, self.global_offset))}_'
            f'{".".join(map(str, self.global_shape))}'
        )
liangjing's avatar
v1  
liangjing committed
574
575
576
577

    def __str__(self):
        return f'{self.__class__.__name__}(key=\'{self.key}\')'

liangjing's avatar
liangjing committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
    @classmethod
    def empty_from_unique_key(cls, unique_key, replica_id: ReplicaId = 0) -> 'ShardedObject':
        """Instantiates a ShardedObject from a unique key.

        Args:
            unique_key: a string of the form
                <key>/shard_<global_offset>_<global_shape>
            replica_id: indicates local object replication wrt.
                local objects in different processes

        Returns:
            a ShardedObject with data=None
        """
        key, shard_key = unique_key.split('/')
        shard_str, offset, shape = shard_key.split('_')
        assert shard_str == 'shard'
        offset = tuple(map(int, offset.split('.')))
        shape = tuple(map(int, shape.split('.')))
        if len(shape) + 1 == len(offset):
            # This is a backward-compatible fix. We don't know the last
            # element of global shape so set it to -1.
            shape += (-1,)
        return cls(key, None, shape, offset, replica_id)


FactoryBuildFn = Callable[[str, torch.Tensor, ReplicaId, Optional[slice]], ShardedStateDict]
FactoryMergeFn = Callable[[StateDict], torch.Tensor]

liangjing's avatar
v1  
liangjing committed
606
607

@dataclass
liangjing's avatar
liangjing committed
608
609
class ShardedTensorFactory(ShardedBase):
    """Allows to apply transformations to tensors before/after serialization.
liangjing's avatar
v1  
liangjing committed
610
611
612

    The essence of those transformations is that they can be applied to
    optimizer states the same way they are applied to the model params.
liangjing's avatar
liangjing committed
613
614
615
    The ultimate state dict with sharded tensors must depend functionally on
    `build_fn` arguments (key, data, replica_id, flattened_range),
    which will be provided by the optimizer.
liangjing's avatar
v1  
liangjing committed
616
617
618

    Builder creates a sub-state-dict out of a tensor before saving, and merger
    merges the corresponding state dict after loading.
liangjing's avatar
liangjing committed
619
620
621
622
623
624
625
626
627
628
629
630
631

    Args:
        key (str): unique identifier of the factory
        data (torch.Tensor): original model parameter that will be further
            transformed by this factory
        build_fn (callable): function that transforms the original tensor
            to a sharded state dict
        merge_fn (callable): function that transforms loaded subtree back
            into a single tensor (inverse of `build_fn`)
        replica_id (ReplicaId): indicates factory replication wrt.
            factories in different processes
        flattened_range (slice, optional): indicates additional flattening
            applied to the ShardedTensors produced by the factory
liangjing's avatar
v1  
liangjing committed
632
633
634
635
    """

    key: str
    data: torch.Tensor
liangjing's avatar
liangjing committed
636
637
638
639
    build_fn: FactoryBuildFn
    merge_fn: FactoryMergeFn
    replica_id: ReplicaId = 0
    flattened_range: Optional[slice] = None
liangjing's avatar
v1  
liangjing committed
640
641

    def build(self):
liangjing's avatar
liangjing committed
642
643
644
645
646
647
648
649
650
        """Builds a ShardedStateDict from the original tensor"""
        return self.build_fn(self.key, self.data, self.replica_id, self.flattened_range)

    def validate_metadata_integrity(self):
        """No reasonable checks can be applied"""
        pass

    def without_data(self):
        return replace(self, data=None)
liangjing's avatar
v1  
liangjing committed
651
652
653


def apply_factories(sharded_state_dict: ShardedStateDict):
liangjing's avatar
liangjing committed
654
655
656
657
658
659
660
661
662
663
    """Turn ShardedTensorFactories into ShardedTensors *in-place*.

    Args:
        sharded_state_dict (ShardedStateDict): state dict possibly
            containing ShardedTensorFactory objects

    Returns:
        None: state dict is modified in place
    """

liangjing's avatar
v1  
liangjing committed
664
665
666
667
668
669
670
671
    def apply(x):
        if isinstance(x, ShardedTensorFactory):
            x = x.build()
        return x

    dict_list_map_inplace(apply, sharded_state_dict)


liangjing's avatar
liangjing committed
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
def apply_factory_merges(
    x1: StateDict, x2: ShardedStateDict, key: Tuple[str, ...] = ()
) -> StateDict:
    """Apply merges defined by ShardedTensorFactories *in-place*.

    Args:
        x1 (StateDict): state dict loaded from the checkpoint
        x2 (ShardedStateDict): subset of `x1` (in terms of dict keys)
            with ShardedTensorFactory
            as (possibly nested) values that define how to
            merge objects from the `x1` state dict
        key (Tuple[str, ...]): current key in a recursive call.
            Used only for reporting meaningful errors

    Returns:
        StateDict: `x1` modified in-place
    """
liangjing's avatar
v1  
liangjing committed
689
690
691
692
693
694
695
    if isinstance(x2, ShardedTensorFactory):
        return x2.merge_fn(x1)

    # There rest is almost the same as the `merge` function from `dict_utils`
    if isinstance(x1, dict) and isinstance(x2, dict):
        for k, v2 in x2.items():
            if k not in x1:
liangjing's avatar
liangjing committed
696
697
698
699
                raise ValueError(
                    f'Different dict keys encountered in `apply_factory_merges` '
                    f'({x1.keys()} vs {x2.keys()})'
                )
liangjing's avatar
v1  
liangjing committed
700
            else:
liangjing's avatar
liangjing committed
701
                x1[k] = apply_factory_merges(x1[k], v2, key=key + (k,))
liangjing's avatar
v1  
liangjing committed
702
703
    elif isinstance(x1, list) and isinstance(x2, list):
        if len(x1) != len(x2):
liangjing's avatar
liangjing committed
704
705
706
707
708
709
            err_msg = (
                f'Cannot merge two lists with different lengths '
                f'({len(x1)} and {len(x2)}, encountered at key {key})'
            )
            logger.error(err_msg + f'\nx1: {x1}\nx2: {x2}')
            raise ValueError(err_msg)
liangjing's avatar
v1  
liangjing committed
710
        for i, v2 in enumerate(x2):
liangjing's avatar
liangjing committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
            x1[i] = apply_factory_merges(x1[i], v2, key=key + (i,))
    elif isinstance(x1, list) and isinstance(x2, dict):
        for k, v2 in x2.items():
            if not isinstance(k, int):
                raise ValueError(
                    f'Invalid dict key {k} non-integer type encountered '
                    f'in a list-dict merge at level {key}'
                )
            if k >= len(x1):
                raise ValueError(
                    f'Dict key {k} out of bound for list of length'
                    f'{len(x1)} (encountered at level {key})'
                )
            x1[k] = apply_factory_merges(x1[k], v2, key=key + (k,))
liangjing's avatar
v1  
liangjing committed
725
    else:
liangjing's avatar
liangjing committed
726
727
728
        raise ValueError(
            f'Duplicate non-dict and non-list values encountered: `{x1}` and `{x2} (at key {key})`'
        )
liangjing's avatar
v1  
liangjing committed
729
    return x1