train.py 17 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
"""Pretrain or SFT multimodal."""
from copy import deepcopy
from functools import partial
import os
import sys
import warnings

import torch

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir, os.path.pardir)))

from megatron.training import get_args, get_timers, get_tokenizer, print_rank_0
from megatron.training.arguments import core_transformer_config_from_args
from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType
from megatron.core.parallel_state import get_tensor_model_parallel_rank
from config import get_language_model_config, get_vision_model_config, get_vision_projection_config
from megatron.core.models.multimodal.llava_model import LLaVAModel
from layer_specs import get_layer_spec, get_mlp_module_spec, get_layer_spec_te
from megatron.training import pretrain
from dataloader_provider import train_valid_test_dataloaders_provider

def model_provider(
    pre_process=True, post_process=True, add_encoder=True, add_decoder=True,
    parallel_output=True) -> LLaVAModel:
    """Builds the model.

    Args:
        pre_process (bool): Include the embedding layer in the gpt decoder (used with pipeline parallelism). Defaults to True.
        post_process (bool): Include an output layer and a layernorm in the gpt decoder (used with pipeline parallelism). Defaults to True.
        add_encoder (bool): Construct the encoder module (used with pipeline parallelism). Defaults to True. When we use pipelining, the encoder
            will live on only a subset of the pipeline stages (specifically, only the first stage).
        add_decoder (bool): Construct the decoder module (used with pipeline parallelism). Defaults to True. When we use pipelining, the decoder
            will live on only a subset of the pipeline stages (specifically, every stage after the first one).
        parallel_output (bool): Enable parallel model output.

    Returns:
        model: A multimodal model.
    """
    args = get_args()

    use_te = args.use_te

    print_rank_0('building a multimodal model ...')

    num_image_tokens = get_num_image_embeddings()

    old_seq_length = args.seq_length
    args.decoder_seq_length = args.seq_length + num_image_tokens
    args.seq_length = num_image_tokens
    if torch.distributed.get_rank() == 0:
        warnings.warn("Changed decoder_seq_length to num_image_tokens ({num_image_tokens}) + user-specified seq_length ({old_seq_length}).")

    if args.decoder_seq_length > args.max_position_embeddings:
        args.max_position_embeddings = args.decoder_seq_length
        warnings.warn("Expanded max_position_embeddings to {args.max_position_embeddings} to accommodate the full sequence of vit output + llm output.")

    base_config = core_transformer_config_from_args(get_args())
    base_config.language_model_type = args.language_model_type
    base_config.vision_model_type = args.vision_model_type
    base_config.calculate_per_token_loss = True

    language_config = deepcopy(base_config)
    language_config = get_language_model_config(language_config)

    if use_te:
        language_transformer_layer_spec = get_layer_spec_te(is_vit=False)   # TENorm detects LayerNorm/RMS automatically.
    else:
        language_transformer_layer_spec = get_layer_spec(is_vit=False, normalization=language_config.normalization)

    vision_config = deepcopy(base_config)
    vision_config = get_vision_model_config(vision_config, apply_query_key_layer_scaling=args.apply_query_key_layer_scaling)

    vision_model_type = args.vision_model_type
    if vision_model_type == "clip":
        if use_te:
            vision_transformer_layer_spec = get_layer_spec_te(is_vit=True)  # TENorm detects LayerNorm/RMS automatically.
        else:
            vision_transformer_layer_spec = get_layer_spec(is_vit=True, normalization=vision_config.normalization)
    else:
        raise RuntimeError("unsupported vision model type", vision_model_type)

    vision_projection_config = deepcopy(base_config)
    vision_projection_config = get_vision_projection_config(vision_projection_config, language_config.hidden_size)

    if args.encoder_pipeline_model_parallel_size > 0:
        assert args.encoder_pipeline_model_parallel_size == 1, "ViT can only live on 1 pipeline stage."
        vision_config.pipeline_model_parallel_size = args.encoder_pipeline_model_parallel_size
        vision_projection_config.pipeline_model_parallel_size = args.encoder_pipeline_model_parallel_size
        if args.encoder_tensor_model_parallel_size > 0:
            vision_config.tensor_model_parallel_size = args.encoder_tensor_model_parallel_size
            vision_projection_config.tensor_model_parallel_size = args.encoder_tensor_model_parallel_size

    vision_projection_layer_spec = get_mlp_module_spec(use_te=use_te).submodules

    model = LLaVAModel(
        language_transformer_config=language_config,
        language_transformer_layer_spec=language_transformer_layer_spec,
        language_vocab_size=args.padded_vocab_size,
        language_max_sequence_length=args.max_position_embeddings,
        vision_transformer_config=vision_config,
        vision_transformer_layer_spec=vision_transformer_layer_spec,
        drop_vision_class_token=args.disable_vision_class_token,
        vision_projection_config=vision_projection_config,
        vision_projection_layer_spec=vision_projection_layer_spec,
        vision_projection_type="mlp",
        allow_missing_vision_projection_checkpoint=args.allow_missing_vision_projection_checkpoint,
        parallel_output=parallel_output,
        language_position_embedding_type=args.position_embedding_type,
        language_rotary_percent=args.rotary_percent,
        pre_process=pre_process,
        post_process=post_process,
        add_encoder=add_encoder,
        add_decoder=add_decoder,
        img_h=args.img_h,
        img_w=args.img_w,
        patch_dim=args.patch_dim,
        language_rotary_base=args.rotary_base,
    )

    model.freeze(freeze_language_model=args.freeze_LM, freeze_vision_model=args.freeze_ViT, freeze_vision_projection=False)

    return model


def get_batch(data_iterator):
    """Generate a batch"""

    args = get_args()

    imgs = None
    tokens = None
    labels = None
    loss_mask = None
    attention_mask = None
    position_ids = None
    num_tiles = None

    # Broadcast data.
    torch.cuda.nvtx.range_push("get_data")
    if data_iterator is not None and get_tensor_model_parallel_rank() == 0:
        data = next(data_iterator)
    else:
        data = None

    data_text = tensor_parallel.broadcast_data(["text"], data, torch.int64)["text"]
    prompt_len = tensor_parallel.broadcast_data(["prompt_len"], data, torch.int64)["prompt_len"]
    target = tensor_parallel.broadcast_data(["target"], data, torch.int64)["target"]

    imgs = tensor_parallel.broadcast_data(["imgs"], data, torch.float32)["imgs"]
    num_tiles = tensor_parallel.broadcast_data(["num_tiles"], data, torch.int)["num_tiles"]

    # Dummy image, no image.
    if imgs.shape == torch.Size([1, 1]):
        imgs = torch.tensor([], dtype=torch.float32, device=data_text.device)
        num_tiles = torch.tensor([], dtype=torch.int, device=data_text.device)

    torch.cuda.nvtx.range_pop()

    tokens_ = data_text.long()

    torch.cuda.nvtx.range_push("index tokens")
    tokenizer = get_tokenizer()
    text_length = args.decoder_seq_length - args.seq_length
    tokens = tokens_[:, :text_length].contiguous()
    labels = tokens_[:, 1:text_length+1].contiguous()

    assert tokens.shape == labels.shape, f"tokens: {tokens.shape} != labels: {labels.shape}"
    torch.cuda.nvtx.range_pop()

    torch.cuda.nvtx.range_push("get_ltor_masks_and_position_ids")
    if hasattr(tokenizer, 'eod'):
        eod_token = tokenizer.eod
    elif hasattr(tokenizer, 'eos_id'):
        eod_token = tokenizer.eos_id
    attention_mask, loss_mask, position_ids = \
        get_ltor_masks_and_position_ids(tokens, eod_token,
                                        args.reset_position_ids,
                                        args.reset_attention_mask,
                                        args.eod_mask_loss,
                                        question_length=prompt_len,
                                        target=target[:, 1:text_length+1]
                                        )
    torch.cuda.nvtx.range_pop()

    return tokens, labels, loss_mask, attention_mask, position_ids, imgs, num_tiles


def get_num_image_embeddings():
    """Get the number of image embeddings per tile."""
    args = get_args()

    add_class_token = not args.disable_vision_class_token

    num_patches_per_dim_h = args.img_h // args.patch_dim
    num_patches_per_dim_w = args.img_w // args.patch_dim
    num_patches = num_patches_per_dim_h * num_patches_per_dim_w
    num_image_embeddings_per_tile = num_patches + (1 if add_class_token else 0)

    max_num_image_embeddings = (args.max_num_tiles + int(args.use_thumbnail)) * num_image_embeddings_per_tile

    if max_num_image_embeddings > args.max_position_embeddings:
        raise RuntimeError(f"Too many image embeddings {max_num_image_embeddings} for language model max embedding size {args.max_position_embeddings}")

    return num_image_embeddings_per_tile


def get_ltor_masks_and_position_ids(data,
                                    eod_token,
                                    reset_position_ids,
                                    reset_attention_mask,
                                    eod_mask_loss,
                                    question_length=None,
                                    target=None,
                                    weights=None):
    """Build masks and position id for left to right model."""

    # Extract batch size and sequence length.
    micro_batch_size, seq_length = data.size()

    # Attention mask (lower triangular).
    if reset_attention_mask:
        att_mask_batch = micro_batch_size
    else:
        att_mask_batch = 1

    attention_mask = torch.tril(torch.ones(
        (att_mask_batch, seq_length, seq_length), device=data.device)).view(
            att_mask_batch, 1, seq_length, seq_length)

     # Loss mask.
    if target != None: # use target to create loss mask that is created in data preparation step
        loss_mask = torch.ones(target.size(), dtype=torch.float, device=data.device)
        loss_mask[target == eod_token] = 0.0 # mask paddings
        loss_mask[target == -100] = 0.0 # mask prompts

    else: # default creation
        loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
        if eod_mask_loss:
            loss_mask[data == eod_token] = 0.0

        if question_length is not None:
            for b in range(micro_batch_size):
                loss_mask[b, :max(0, question_length[b].item() - 1)] = 0.0


    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)
    # We need to clone as the ids will be modifed based on batch index.
    if reset_position_ids:
        position_ids = position_ids.clone()


    if question_length is not None:
        # Create a mask based on question_length
        question_length_mask = torch.arange(loss_mask.size(1), device=loss_mask.device)[None, :] < question_length[:, None]
        # Invert the mask (1 where we want to keep the loss, 0 where we want to zero it out)
        inverted_mask = ~question_length_mask
        # Apply the mask to loss_mask
        loss_mask = loss_mask * inverted_mask.float()

    if reset_position_ids or reset_attention_mask:
        # Loop through the batches:
        for b in range(micro_batch_size):

            # Find indecies where EOD token is.
            eod_index = position_ids[b, data[b] == eod_token]
            # Detach indecies from positions if going to modify positions.
            if reset_position_ids:
                eod_index = eod_index.clone()

            # Loop through EOD indecies:
            prev_index = 0
            for j in range(eod_index.size()[0]):
                i = eod_index[j]
                # Mask attention loss.
                if reset_attention_mask:
                    attention_mask[b, 0, (i + 1):, :(i + 1)] = 0
                # Reset positions.
                if reset_position_ids:
                    position_ids[b, (i + 1):] -= (i + 1 - prev_index)
                    prev_index = i + 1

    # Convert attention mask to binary:
    attention_mask = (attention_mask < 0.5)
    if weights is not None:
        loss_mask = loss_mask * weights

    return attention_mask, loss_mask, position_ids


def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()

    loss_mask = loss_mask.contiguous().view(-1).float()

    total_tokens = loss_mask.sum()
    total_loss = torch.sum(losses.view(-1) * loss_mask)
    loss = torch.cat([total_loss.view(1), total_tokens.view(1)])

    reporting_loss = loss.clone().detach()
    torch.distributed.all_reduce(reporting_loss, group=mpu.get_data_parallel_group())

    local_num_tokens = loss[1].clone().detach().to(torch.int)

    return (
        total_loss,
        local_num_tokens,
        {'lm loss': (reporting_loss[0], reporting_loss[1])},
    )


def forward_step(data_iterator, model: LLaVAModel):
    """Forward training step.

    Args:
        data_iterator (torch.utils.data.dataloader): Input data iterator
        model: Multimodal model

    Returns:
        output_tensor (torch.Tensor): Loss of shape [b, s] if labels are provided, otherwise logits of shape [b, s, vocab_size].
        loss_func (callable): Loss function with a loss mask specified.
    """
    timers = get_timers()

    # Get the batch.
    timers('batch-generator', log_level=2).start()
    tokens, labels, loss_mask, attention_mask, position_ids, images, num_image_tiles = get_batch(data_iterator)
    timers('batch-generator').stop()

    output_tensor, loss_mask = model(images, tokens, position_ids, attention_mask, labels, loss_mask, num_image_tiles=num_image_tiles)

    return output_tensor, partial(loss_func, loss_mask)

def add_multimodal_extra_args(parser):
    """Extra arguments."""
    group = parser.add_argument_group(title='multimodal arguments')
    group.add_argument('--valid-path', nargs='*', default=None,
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
    group.add_argument('--dataset-config', type=str, default=None)
    group.add_argument("--prompt-path", type=str, default=None)
    group.add_argument('--freeze-LM', action='store_true', default=False)
    group.add_argument('--freeze-ViT', action='store_true', default=False)
    group.add_argument('--language-model-type', type=str, required=True)
    group.add_argument('--vision-model-type', type=str, default="clip")
    group.add_argument("--disable-vision-class-token", action="store_true", default=False)
    group.add_argument("--allow-missing-vision-projection-checkpoint", action="store_true", default=False)
    group.add_argument("--use-te", action="store_true", default=False)
    group.add_argument("--dataloader-save", type=str, default=None, help="Energon dataloader state save path")
    group.add_argument("--use-tiling", action="store_true", default=False, help="Use input image tiling")
    group.add_argument("--max-num-tiles", type=int, default=1, help="Maximum number of image tiles")
    group.add_argument("--use-thumbnail", action="store_true", default=False, help="Add image thumbnail as a tile")

    return parser


def llava_embedding_ranks(pp_ranks):
    """LLava's embedding ranks consist of the decoder's first and last ranks (ie, the ViT has no embeddings).
    Args:
        pp_ranks: A list of global ranks that constitute a pipeline group.
    """
    args = get_args()

    # encoder size is also the index to the first rank of the decoder.
    epp = args.encoder_pipeline_model_parallel_size

    last_rank = pp_ranks[-1]
    if len(pp_ranks) == 1 or pp_ranks[epp] == last_rank:
        return [last_rank]
    else:
        return [pp_ranks[epp], last_rank]


def llava_position_embedding_ranks(pp_ranks):
    """LLava's embedding ranks consist of the singular rank of the model or the decoder's first rank.
    Args:
        pp_ranks: A list of global ranks that constitute a pipeline group.
    """
    args = get_args()

    # encoder size is also the index to the first rank of the decoder.
    epp = args.encoder_pipeline_model_parallel_size

    last_rank = pp_ranks[-1]
    if len(pp_ranks) == 1:
        return [last_rank]
    else:
        return [pp_ranks[epp]]


if __name__ == "__main__":
    train_valid_test_dataloaders_provider.is_distributed = True

    pretrain(
        train_valid_test_dataloaders_provider,
        model_provider,
        ModelType.encoder_and_decoder,
        forward_step,
        args_defaults={'tokenizer_type': 'GPT2BPETokenizer'},
        extra_args_provider=add_multimodal_extra_args,
        get_embedding_ranks=llava_embedding_ranks,
        get_position_embedding_ranks=llava_position_embedding_ranks,
    )