run_text_generation.py 19.8 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
"""Generate text using a vision language model."""
import glob
import json
import logging
import os
import sys
from collections import defaultdict
from functools import partial

# Add megatron to the path.
sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir, os.path.pardir))
)

import datasets
import numpy as np
import torch
from dataset_helpers import tokenizer_image_token
from image_processing import get_visual_transform
from MMMU.eval.utils.data_utils import (
    CAT_SHORT2LONG,
    construct_prompt,
    load_yaml,
    process_single_sample,
)
from MMMU.eval.utils.eval_utils import parse_multi_choice_response
from PIL import Image
from train import add_multimodal_extra_args, get_num_image_embeddings, model_provider

from megatron.core.models.multimodal.llava_model import IMAGE_TOKEN_INDEX
from megatron.inference.text_generation.api import generate_and_post_process
from megatron.inference.text_generation.forward_step import ForwardStep
from megatron.training import get_args, get_model, get_tokenizer, print_rank_0
from megatron.training.checkpointing import load_checkpoint
from megatron.training.initialize import initialize_megatron


def add_text_generation_args(parser):
    """Text generation arguments."""
    group = parser.add_argument_group(title='Vision language model text generation arguments')

    group.add_argument("--temperature", type=float, default=1.0, help='Sampling temperature.')
    group.add_argument("--top_p", type=float, default=0.0, help='Top p sampling.')
    group.add_argument("--top_k", type=int, default=0, help='Top k sampling.')
    group.add_argument(
        "--out-seq-length", type=int, default=1024, help='Length of the output generated text.'
    )
    group.add_argument("--output-path", type=str, required=True, help='Output file path')
    group.add_argument('--input-image-path', type=str, required=True, help="Input image directory")
    group.add_argument('--input-metadata-path', type=str, help="Input metadata path")
    group.add_argument(
        '--num-partitions', type=int, default=0, help="Number of partitions for inputs."
    )
    group.add_argument('--partition-id', type=int, default=0, help="Partition index")
    group.add_argument("--drop-vision-class-token", action="store_true", default=False)
    group.add_argument("--gt-path", type=str, help="Optional ground truth file")
    group.add_argument(
        "--task",
        type=str,
        choices=["captioning", "TextVQA", "VQAv2", "ChartQA", "MMMU"],
        help="Generation task to run",
    )
    group.add_argument(
        "--num-samples-per-partition", type=int, default=0, help="Number of samples per partition"
    )
    group.add_argument(
        "--prompt-format",
        type=str,
        required=True,
        choices=["llama3", "mistral"],
        help="Prompting format to use",
    )

    # Add common multimodal arguments needed for e.g. building the model.
    parser = add_multimodal_extra_args(parser)

    return parser


def _get_partition_bounds(
    total_num_samples, num_samples_per_partition, num_partitions, partition_id
):
    if num_samples_per_partition == 0:
        num_samples_per_partition = total_num_samples // num_partitions
    return num_samples_per_partition * partition_id, num_samples_per_partition * (partition_id + 1)


def get_evaluation_dataset(
    task,
    input_image_path,
    gt_path,
    img_h,
    img_w,
    use_tiling,
    max_num_tiles,
    use_thumbnail,
    num_samples_per_partition,
    num_partitions,
    partition_id,
):
    """Build evaluation dataset."""
    images = []
    tile_counts = []
    questions, answers = [], []
    samples, sample_ids = [], []

    if task == "TextVQA":
        samples = json.load(open(gt_path, encoding='utf-8'))['data']

        # Optionally, process only a subset of the input files.
        if num_partitions > 0:
            lb, ub = _get_partition_bounds(
                len(samples), num_samples_per_partition, num_partitions, partition_id
            )
            samples = samples[lb:ub]

        for i in range(len(samples)):
            sample = samples[i]

            img_file = "{}/{}.jpg".format(input_image_path, sample["image_id"])
            if not os.path.exists(img_file):
                img_file = img_file.replace('.jpg', '.png')

            img = Image.open(img_file)
            imgs = get_visual_transform(
                img, img_h, img_w, use_tiling, max_num_tiles, use_thumbnail, augment=False
            )

            images.append(imgs)
            tile_counts.append(torch.tensor([len(imgs)], dtype=torch.int))

            questions.append(sample["question"])
            answers.append(sample["answers"])
            sample_ids.append(sample["question_id"])
    elif task == "VQAv2":
        samples = json.load(open(gt_path, encoding='utf-8'))

        # Optionally, process only a subset of the input files.
        if num_partitions > 0:
            lb, ub = _get_partition_bounds(
                len(samples), num_samples_per_partition, num_partitions, partition_id
            )
            samples = samples[lb:ub]

        for i in range(len(samples)):
            sample = samples[i]

            img_file = "{}/{}".format(input_image_path, sample["image"])

            img = Image.open(img_file)
            imgs = get_visual_transform(
                img, img_h, img_w, use_tiling, max_num_tiles, use_thumbnail, augment=False
            )

            images.append(imgs)
            tile_counts.append(torch.tensor([len(imgs)], dtype=torch.int))

            questions.append(sample["question"])
            answers.append(sample["answer"])
            sample_ids.append(sample["question_id"])
    elif task == "ChartQA":
        samples = json.load(open(gt_path, encoding='utf-8'))

        # Optionally, process only a subset of the input files.
        if num_partitions > 0:
            lb, ub = _get_partition_bounds(
                len(samples), num_samples_per_partition, num_partitions, partition_id
            )
            samples = samples[lb:ub]

        for i in range(len(samples)):
            sample = samples[i]

            img_file = "{}/{}".format(input_image_path, sample["imgname"])

            img = Image.open(img_file)
            imgs = get_visual_transform(
                img, img_h, img_w, use_tiling, max_num_tiles, use_thumbnail, augment=False
            )

            images.append(imgs)
            tile_counts.append(torch.tensor([len(imgs)], dtype=torch.int))

            questions.append(sample["query"])
            answers.append(sample["label"])
            sample_ids.append(i)
    elif task == "captioning":
        image_files = sorted(glob.glob(input_image_path + "/*"))
        # Optionally, process only a subset of the input files.
        if num_partitions > 0:
            lb, ub = _get_partition_bounds(
                len(image_files), num_samples_per_partition, num_partitions, partition_id
            )
            image_files = image_files[lb:ub]

        gts = json.load(open(gt_path))
        answers = defaultdict(list)
        for gt in gts["annotations"]:
            answers[gt["image_id"]].append(gt['caption'])

        # Run image preprocessing.
        for i in range(len(image_files)):
            image_file = image_files[i]
            img = Image.open(image_file)
            imgs = get_visual_transform(
                img, img_h, img_w, use_tiling, max_num_tiles, use_thumbnail, augment=False
            )

            images.append(imgs)
            tile_counts.append(torch.tensor([len(imgs)], dtype=torch.int))

            image_id = int(image_file.split("_")[-1].split(".")[0])
            sample_ids.append(image_id)
    elif task == 'MMMU':
        # The following downloads the MMMU dataset from HuggingFace and uses the API from the MMMU github repo to run MMMU evaluation.
        all_mmmu_datasets = []

        hf_datasets_cache = os.environ["HF_DATASETS_CACHE"]
        assert hf_datasets_cache != "", "Please set the environment variable HF_DATASETS_CACHE."

        for subject in CAT_SHORT2LONG.values():
            subject_dataset = datasets.load_dataset(
                "MMMU/MMMU", subject, split=datasets.Split.VALIDATION, cache_dir=hf_datasets_cache
            )
            all_mmmu_datasets.append(subject_dataset)

        dataset = datasets.concatenate_datasets(all_mmmu_datasets)

        dataset = [s for s in dataset if s['id'].startswith("val")]

        # Optionally, process only a subset of the input files.
        start_idx = 0
        end_idx = len(dataset)
        if num_partitions > 0:
            start_idx, end_idx = _get_partition_bounds(
                len(dataset), num_samples_per_partition, num_partitions, partition_id
            )

        end_idx = min(len(dataset), end_idx)

        # Using the LLaVA config from the MMMU repo.
        config = load_yaml("examples/multimodal/MMMU/eval/configs/llava1.5.yaml")
        for k, v in config.items():
            if isinstance(v, list):
                assert len(v) == 1, "only one value supported."
                config[k] = v[0]

        for idx in range(start_idx, end_idx):
            sample = dataset[idx]
            sample = process_single_sample(sample)
            sample = construct_prompt(sample, config)

            img = sample["image"]
            imgs = get_visual_transform(
                img, img_h, img_w, use_tiling, max_num_tiles, use_thumbnail, augment=False
            )

            images.append(imgs)
            tile_counts.append(torch.tensor([len(imgs)], dtype=torch.int))

            sample_ids.append(sample['id'])

            # TODO: Support multiple input images and the original image position. Note: <image> is added back in the prompt construction below.
            prompt = sample['final_input_prompt']
            for i in range(8):
                prompt = prompt.replace(f"<image {i}>", "")
            questions.append(prompt)

            answers.append(sample['answer'])
            samples.append(sample)
    else:
        raise NotImplementedError("unsupported task")

    return images, tile_counts, samples, sample_ids, questions, answers


def generate_samples(model):
    """Text generation using a trained vision language model."""
    args = get_args()

    images, tile_counts, samples, sample_ids, questions, answers = get_evaluation_dataset(
        args.task,
        args.input_image_path,
        args.gt_path,
        args.img_h,
        args.img_w,
        args.use_tiling,
        args.max_num_tiles,
        args.use_thumbnail,
        args.num_samples_per_partition,
        args.num_partitions,
        args.partition_id,
    )

    num_samples = len(sample_ids)
    idx = 0
    while idx < num_samples:
        imgs = torch.stack(images[idx]).cuda()
        num_tiles = tile_counts[idx].cuda()
        sample_id = sample_ids[idx]

        prompt = get_prompt(args.task, questions, idx, args.prompt_format)

        forward_step = partial(VLMForwardStep, imgs, num_tiles)

        if torch.distributed.get_rank() == 0:
            resp_sentences, _, _, _ = generate_and_post_process(
                model,
                forward_step=forward_step,
                prompts=[prompt],
                tokens_to_generate=args.out_seq_length,
                top_k_sampling=args.top_k,
                top_p_sampling=args.top_p,
                add_BOS=False,
                temperature=args.temperature,
                random_seed=args.seed,
                detokenize_segments=False,
            )

            for prompt, generation in zip([prompt], resp_sentences):
                output = {"sample_id": sample_id, "prompt": prompt}

                output_name = ""
                if args.task == "captioning":
                    output_name = "caption"
                elif args.task in ("TextVQA", "VQAv2", "ChartQA"):
                    output_name = "answer"
                elif args.task in ("MMMU"):
                    output_name = "text"

                generated = get_generated(prompt, args.prompt_format, generation)
                output[output_name] = generated

                if args.task == "captioning":
                    output["ground_truth"] = answers[sample_id]
                elif args.task in ("TextVQA", "VQAv2"):
                    output["gt_answer"] = [ans for ans in answers[idx]]
                elif args.task == "ChartQA":
                    output["gt_answer"] = [answers[idx]]
                elif args.task == "MMMU":
                    sample = samples[idx]

                    prediction = generated
                    if sample["question_type"] == "multiple-choice":
                        prediction = parse_multi_choice_response(
                            generated, sample["all_choices"], sample["index2ans"]
                        )

                    output["prediction"] = prediction

                print_rank_0(output)

                yield output
                idx += 1
        else:
            generate_and_post_process(model, forward_step=forward_step, detokenize_segments=False)

            idx += 1


def generate_and_write_samples(model):
    """Generate text and write to an output file."""
    args = get_args()

    for output in generate_samples(model):
        if torch.distributed.get_rank() == 0:
            with open(args.output_path, 'a') as f:
                f.write(json.dumps(output) + "\n")


class VLMForwardStep(ForwardStep):
    """Inference forward step for a multimodal model."""

    def __init__(self, images, num_tiles, model, max_batch_size, max_sequence_length):
        """Create multimodal forward step."""
        total_num_tiles = torch.sum(num_tiles).item()
        num_img_embeddings = get_num_image_embeddings() * total_num_tiles

        super().__init__(model, max_batch_size, max_sequence_length + num_img_embeddings)
        self._images = images
        self._num_tiles = num_tiles

    def _forward(self, tokens, position_ids, attention_mask):
        return self.model(
            self._images,
            tokens,
            position_ids,
            attention_mask=None,
            inference_params=self.inference_params,
            num_image_tiles=self._num_tiles,
        )

    def __call__(self, tokens, position_ids, attention_mask):
        logits = super().__call__(tokens, position_ids, attention_mask)

        # On the first inference iteration, we compute image tokens.
        # Update the sequence length offset by the number of image tokens.
        num_images = (tokens == -200).sum().item()
        num_tokens = tokens.size(1)
        if num_tokens > 1 and num_images > 0:
            self.inference_params.sequence_len_offset += (
                self.inference_params.key_value_memory_dict["image_tokens_count"] - num_images
            )

        return logits


def get_prompt(task, questions, idx, prompt_format):
    """Get a prompt for the evaluation task."""
    if task == "captioning":
        if prompt_format == "llama3":
            prompt = "<|start_header_id|>system<|end_header_id|>\n\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\nProvide a one-sentence caption for provided image.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
        elif prompt_format == "mistral":
            prompt = "<image>Give a short and clear explanation of the subsequent image.\n"
    elif task == "TextVQA":
        question = questions[idx]

        if prompt_format == "llama3":
            prompt = "<|start_header_id|>system<|end_header_id|>\n\nAnswer the questions.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\n{}\nAnswer the question using a single word or phrase.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n".format(
                question
            )
        elif prompt_format == "mistral":
            prompt = "<image>\n{}\nAnswer the question using a single word or phrase.".format(
                question
            )
    elif task == "VQAv2":
        question = questions[idx]

        if prompt_format == "llama3":
            prompt = "<|start_header_id|>system<|end_header_id|>\n\nAnswer the questions.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\n{}\nAnswer the question using a single word or phrase.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n".format(
                question
            )
        elif prompt_format == "mistral":
            prompt = "<image>\n{}\nAnswer the question using a single word or phrase.".format(
                question
            )
    elif task == "ChartQA":
        question = questions[idx]

        if prompt_format == "llama3":
            prompt = "<|start_header_id|>system<|end_header_id|>\n\nAnswer the questions.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n<image>\n{}\nAnswer the question using a single word or phrase.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n".format(
                questions
            )
        elif prompt_format == "mistral":
            prompt = "<image>\n{}\nAnswer the question using a single word or phrase.".format(
                question
            )
    elif task == "MMMU":
        question = questions[idx]

        if prompt_format == "llama3":
            prompt = "<|start_header_id|>system<|end_header_id|>\n\nAnswer the questions.<|eot_id|>{}<|start_header_id|>user<|end_header_id|>\n\n<image>\n{}\nAnswer the question using a single word or phrase.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
            prompt = prompt.format("", question)
        elif prompt_format == "mistral":
            prompt = "<image>\n{}\nAnswer the question using a single word or phrase.".format(
                question
            )

    return prompt


def get_generated(prompt, prompt_format, prompt_and_generation):
    """Strip prompt and other unnecessary text from generation."""
    start = len(prompt.replace("<image>", ""))
    if prompt_format == "llama3":
        start += len("<|begin_of_text|>")
        start += 1
    elif prompt_format == "mistral":
        start += len("<s><unk><s> ")

    generated = prompt_and_generation[start:]
    generated = generated.split("<|eot_id|>")[0]
    generated = generated.split("</s>")[0]
    generated = generated.strip()
    generated = generated.split("\n\n")[0]
    generated = generated.split("\n")[0]

    return generated


def patch_tokenizer(args):
    """Patch tokenizer with image token support."""

    def _decorate_tokenize(f):
        # When tokenizing, replace <image> with the image token index (-200)
        def wrapper(prompt):
            tokens = tokenizer_image_token(args, prompt, f)
            return tokens

        return wrapper

    def _decorate_detokenize(f):
        # When detokenizing, replace image token index (-200) with a dummy value.
        def wrapper(tokens):
            tokens = np.array(tokens)
            tokens[tokens == IMAGE_TOKEN_INDEX] = 0
            tokens = tokens.tolist()

            return f(tokens)

        return wrapper

    tokenizer = get_tokenizer()
    tokenizer.tokenize = _decorate_tokenize(tokenizer.tokenize)
    tokenizer.detokenize = _decorate_detokenize(tokenizer.detokenize)


def main():
    """Vision language model text generation."""
    logging.getLogger(__name__).warning("Models using pipeline parallelism are not supported yet.")

    initialize_megatron(extra_args_provider=add_text_generation_args)

    args = get_args()

    patch_tokenizer(args)  # Make the tokenizer support image tokens.

    def wrapped_model_provider(pre_process, post_process):
        return model_provider(pre_process, post_process, parallel_output=False)

    # Set up model and load checkpoint.
    model = get_model(wrapped_model_provider, wrap_with_ddp=False)

    if args.load is not None:
        _ = load_checkpoint(model, None, None)

    model = model[0]
    model.eval()

    generate_and_write_samples(model)


if __name__ == "__main__":
    main()