rocm_bandwidth_test.cpp 28.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
////////////////////////////////////////////////////////////////////////////////
//
// The University of Illinois/NCSA
// Open Source License (NCSA)
// 
// Copyright (c) 2014-2015, Advanced Micro Devices, Inc. All rights reserved.
// 
// Developed by:
// 
//                 AMD Research and AMD HSA Software Development
// 
//                 Advanced Micro Devices, Inc.
// 
//                 www.amd.com
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// 
//  - Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimers.
//  - Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimers in
//    the documentation and/or other materials provided with the distribution.
//  - Neither the names of Advanced Micro Devices, Inc,
//    nor the names of its contributors may be used to endorse or promote
//    products derived from this Software without specific prior written
//    permission.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS WITH THE SOFTWARE.
//
////////////////////////////////////////////////////////////////////////////////

#include "common.hpp"
#include "rocm_bandwidth_test.hpp"

#include <stdlib.h>
#include <assert.h>
#include <algorithm>
#include <unistd.h>
#include <cctype>
51
#include <cmath>
52
#include <sstream>
53
#include <limits>
54

55
56
57
// Initialize the variable used to capture validation failure
const double RocmBandwidthTest::VALIDATE_COPY_OP_FAILURE = std::numeric_limits<double>::max();

58
// The values are in megabytes at allocation time
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
const size_t RocmBandwidthTest::SIZE_LIST[] = { 1 * 1024,
                                2 * 1024, 4 * 1024, 8 * 1024,
                                16 * 1024, 32 * 1024, 64 * 1024,
                                128 * 1024, 256 * 1024, 512 * 1024,
                                1 * 1024 * 1024, 2 * 1024 * 1024,
                                4 * 1024 * 1024, 8 * 1024 * 1024,
                                16 * 1024 * 1024, 32 * 1024 * 1024,
                                64 * 1024 * 1024, 128 * 1024 * 1024,
                                256 * 1024 * 1024, 512 * 1024  * 1024};

const size_t RocmBandwidthTest::LATENCY_SIZE_LIST[] = { 1,
                                2, 4, 8,
                                16, 32, 64,
                                128, 256, 512,
                                1 * 1024, 2 * 1024,
                                4 * 1024, 8 * 1024,
                                16 * 1024, 32 * 1024,
                                64 * 1024, 128 * 1024,
                                256 * 1024, 512 * 1024 };
78
79

uint32_t RocmBandwidthTest::GetIterationNum() {
80
  return (validate_) ? 1 : (num_iteration_ * 1.2 + 1);
81
82
83
84
85
86
87
88
89
90
91
92
93
94
}

void RocmBandwidthTest::AcquireAccess(hsa_agent_t agent, void* ptr) {
  err_ = hsa_amd_agents_allow_access(1, &agent, NULL, ptr);
  ErrorCheck(err_);
}

void RocmBandwidthTest::AcquirePoolAcceses(uint32_t src_dev_idx,
                                   hsa_agent_t src_agent, void* src,
                                   uint32_t dst_dev_idx,
                                   hsa_agent_t dst_agent, void* dst) {

  // determine which one is a cpu and call acquire on the other agent
  hsa_device_type_t src_dev_type = agent_list_[src_dev_idx].device_type_;
95
  hsa_device_type_t dst_dev_type = agent_list_[dst_dev_idx].device_type_;
96
  if (src_dev_type == HSA_DEVICE_TYPE_GPU) {
97
    AcquireAccess(src_agent, dst);
98
99
100
  }

  if (dst_dev_type == HSA_DEVICE_TYPE_GPU) {
101
    AcquireAccess(dst_agent, src);
102
  }
103

104
  return;
105
}
106
107
108
  
void RocmBandwidthTest::InitializeSrcBuffer(size_t size, void* buf_cpy,
                                     uint32_t cpy_dev_idx, hsa_agent_t cpy_agent) {
109
110

  // Allocate host buffers and setup accessibility for copy operation
111
112
113
  if (init_src_ == NULL) {
    err_ = hsa_amd_memory_pool_allocate(sys_pool_, size, 0, (void**)&init_src_);
    ErrorCheck(err_);
114
115
116
117
118
    long double* src_buf = (long double*) init_src_;
    uint32_t count = (size / sizeof(long double));
    for (uint32_t idx = 0; idx < count; idx++) {
      src_buf[idx] = (init_) ? init_val_ : sin(idx);
    }
119
120
121
    err_ = hsa_signal_create(0, 0, NULL, &init_signal_);
    ErrorCheck(err_);
  }
122

123
  // If copying agent is a CPU, use memcpy to initialize copy buffer
124
  hsa_device_type_t cpy_dev_type = agent_list_[cpy_dev_idx].device_type_;
125
126
  if (cpy_dev_type == HSA_DEVICE_TYPE_CPU) {
    memcpy(buf_cpy, init_src_, size);
127
128
    return;
  }
129

130
131
132
133
134
135
136
  // Copying device is a Gpu, setup buffer access
  // before copying initialization buffer
  AcquireAccess(cpy_agent, init_src_);
  hsa_signal_store_relaxed(init_signal_, 1);
  copy_buffer(buf_cpy, cpy_agent,
              init_src_, cpu_agent_,
              size, init_signal_);
137
138
139
140
141
  return;
}
  
bool RocmBandwidthTest::ValidateDstBuffer(size_t max_size, size_t curr_size, void* buf_cpy,
                                          uint32_t cpy_dev_idx, hsa_agent_t cpy_agent) {
142

143
144
145
146
147
  // Allocate host buffers and setup accessibility for copy operation
  if (validate_dst_ == NULL) {
    err_ = hsa_amd_memory_pool_allocate(sys_pool_, max_size, 0, (void**)&validate_dst_);
    ErrorCheck(err_);
  }
148

149
  // If Copy device is a Gpu setup buffer access
150
  memset(validate_dst_, ~(0x23), curr_size);
151
152
153
154
155
156
157
158
159
160
161
162
163
  hsa_device_type_t cpy_dev_type = agent_list_[cpy_dev_idx].device_type_;
  if (cpy_dev_type == HSA_DEVICE_TYPE_GPU) {
    AcquireAccess(cpy_agent, validate_dst_);
    hsa_signal_store_relaxed(init_signal_, 1);
    copy_buffer(validate_dst_, cpu_agent_,
                buf_cpy, cpy_agent,
                curr_size, init_signal_);
  } else {

    // Copying device is a CPU, copy dst buffer
    // into validation buffer
    memcpy(validate_dst_, buf_cpy, curr_size);
  }
164

165
  // Compare initialization buffer with validation buffer
166
167
168
169
170
  err_ = (hsa_status_t)memcmp(init_src_, validate_dst_, curr_size);
  if (err_ != HSA_STATUS_SUCCESS) {
    exit_value_ = err_;
  }
  return (err_ == HSA_STATUS_SUCCESS);
171
172
}

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
void RocmBandwidthTest::AllocateConcurrentCopyResources(bool bidir,
                                vector<async_trans_t>& trans_list,
                                vector<void*>& buf_list,
                                vector<hsa_agent_t>& dev_list,
                                vector<uint32_t>& dev_idx_list,
                                vector<hsa_signal_t>& sig_list,
                                vector<hsa_amd_memory_pool_t>& pool_list) {

  // Number of Unidirectional or Bidirectional
  // Concurrent Copy transactions in user request
  uint32_t trans_cnt = trans_list.size();
  size_t max_size = size_list_.back();

  // Common variables used in different loops
  void* buf_src;
  void* buf_dst;
  uint32_t src_idx;
  uint32_t dst_idx;
  hsa_signal_t signal;
  hsa_agent_t src_dev;
  hsa_agent_t dst_dev;
  uint32_t src_dev_idx;
  uint32_t dst_dev_idx;
  hsa_amd_memory_pool_t src_pool;
  hsa_amd_memory_pool_t dst_pool;

  // Allocate buffers for the various transactions
  for (uint32_t idx = 0; idx < trans_cnt; idx++) {
    async_trans_t& trans = trans_list[idx];
    src_idx = trans.copy.src_idx_;
    dst_idx = trans.copy.dst_idx_;
    src_pool = trans.copy.src_pool_;
    dst_pool = trans.copy.dst_pool_;
    src_dev = pool_list_[src_idx].owner_agent_;
    dst_dev = pool_list_[dst_idx].owner_agent_;
    src_dev_idx = pool_list_[src_idx].agent_index_;
    dst_dev_idx = pool_list_[dst_idx].agent_index_;
    
    // Allocate buffers and signal for forward copy operation
    AllocateCopyBuffers(max_size,
                        buf_src, src_pool,
                        buf_dst, dst_pool);
    
    err_ = hsa_signal_create(1, 0, NULL, &signal);
    ErrorCheck(err_);

    // Acquire access to destination buffers
    AcquirePoolAcceses(src_dev_idx, src_dev, buf_src,
                       dst_dev_idx, dst_dev, buf_dst);
    
    sig_list.push_back(signal);
    buf_list.push_back(buf_src);
    buf_list.push_back(buf_dst);
    dev_list.push_back(src_dev);
    dev_list.push_back(dst_dev);
    dev_idx_list.push_back(src_dev_idx);
    dev_idx_list.push_back(dst_dev_idx);
230
231
232
  
    // Initialize source buffers with data that could be verified
    InitializeSrcBuffer(max_size, buf_src, src_dev_idx, src_dev);
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    
    // For bidirectional copies allocate buffers
    // and signal for reverse direction as well
    if (bidir) {
      AllocateCopyBuffers(max_size,
                          buf_src, dst_pool,
                          buf_dst, src_pool);
      err_ = hsa_signal_create(1, 0, NULL, &signal);
      ErrorCheck(err_);

      // Acquire access to destination buffers
      AcquirePoolAcceses(dst_dev_idx, dst_dev, buf_src,
                         src_dev_idx, src_dev, buf_dst);
      
      sig_list.push_back(signal);
      buf_list.push_back(buf_src);
      buf_list.push_back(buf_dst);
      dev_list.push_back(dst_dev);
      dev_list.push_back(src_dev);
      dev_idx_list.push_back(dst_dev_idx);
      dev_idx_list.push_back(src_dev_idx);
254
255
256
    
      // Initialize source buffers with data that could be verified
      InitializeSrcBuffer(max_size, buf_src, dst_dev_idx, dst_dev);
257
258
259
260
    }
  }
}

261
void RocmBandwidthTest::AllocateCopyBuffers(size_t size,
262
                        void*& src, hsa_amd_memory_pool_t src_pool,
263
                        void*& dst, hsa_amd_memory_pool_t dst_pool) {
264
265
266
267
268
269

  // Allocate buffers in src and dst pools for forward copy
  err_ = hsa_amd_memory_pool_allocate(src_pool, size, 0, &src);
  ErrorCheck(err_);
  err_ = hsa_amd_memory_pool_allocate(dst_pool, size, 0, &dst);
  ErrorCheck(err_);
270
}
271

272
void RocmBandwidthTest::ReleaseBuffers(std::vector<void*>& buffer_list) {
273

274
275
276
277
278
  for(uint32_t idx = 0; idx < buffer_list.size(); idx++) {
    void* buffer = buffer_list[idx];
    err_ = hsa_amd_memory_pool_free(buffer);
    ErrorCheck(err_);
  }
279
280
}

281
void RocmBandwidthTest::ReleaseSignals(std::vector<hsa_signal_t>& signal_list) {
282

283
284
285
  for(uint32_t idx = 0; idx < signal_list.size(); idx++) {
    hsa_signal_t signal = signal_list[idx];
    err_ = hsa_signal_destroy(signal);
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    ErrorCheck(err_);
  }
}

double RocmBandwidthTest::GetGpuCopyTime(bool bidir,
                                 hsa_signal_t signal_fwd,
                                 hsa_signal_t signal_rev) {

  // Obtain time taken for forward copy
  hsa_amd_profiling_async_copy_time_t async_time_fwd = {0};
  err_= hsa_amd_profiling_get_async_copy_time(signal_fwd, &async_time_fwd);
  ErrorCheck(err_);
  if (bidir == false) {
    return(async_time_fwd.end - async_time_fwd.start);
  }

  hsa_amd_profiling_async_copy_time_t async_time_rev = {0};
  err_= hsa_amd_profiling_get_async_copy_time(signal_rev, &async_time_rev);
  ErrorCheck(err_);
305
306
  
  // Compute time taken to copy
307
308
  double start = min(async_time_fwd.start, async_time_rev.start);
  double end = max(async_time_fwd.end, async_time_rev.end);
309
310
311
312
313
314
315
316
317
318
319
320
321
322
  double copy_time = end - start;

  // Forward copy completed before Reverse began
  if (async_time_fwd.end < async_time_rev.start) {
    return (copy_time - (async_time_rev.start - async_time_fwd.end));
  }

  // Reverse copy completed before Forward began
  if (async_time_rev.end < async_time_fwd.start) {
    return (copy_time - (async_time_fwd.start - async_time_rev.end));
  }

  // Forward and Reverse copies overlapped
  return copy_time;
323
324
}

325
326
327
328
329
330
331
332
333
334
335
336
337
void RocmBandwidthTest::WaitForCopyCompletion(vector<hsa_signal_t>& signal_list) {

  hsa_wait_state_t policy = (bw_blocking_run_ == NULL) ?
                             HSA_WAIT_STATE_ACTIVE : HSA_WAIT_STATE_BLOCKED;

  uint32_t size = signal_list.size();
  for (uint32_t idx = 0; idx < size; idx++) {
    hsa_signal_t signal = signal_list[idx];
    while (hsa_signal_wait_acquire(signal, HSA_SIGNAL_CONDITION_LT,
                                   1, uint64_t(-1), policy));
  }
}

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
void RocmBandwidthTest::copy_buffer(void* dst, hsa_agent_t dst_agent,
                            void* src, hsa_agent_t src_agent,
                            size_t size, hsa_signal_t signal) {

  // Copy from src into dst buffer
  err_ = hsa_amd_memory_async_copy(dst, dst_agent,
                                   src, src_agent,
                                   size, 0, NULL, signal);
  ErrorCheck(err_);

  // Wait for the forward copy operation to complete
  while (hsa_signal_wait_acquire(signal, HSA_SIGNAL_CONDITION_LT, 1,
                                     uint64_t(-1), HSA_WAIT_STATE_ACTIVE));
}

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
void RocmBandwidthTest::RunConcurrentCopyBenchmark(bool bidir,
                                                   vector<async_trans_t>& trans_list) {

  // Number of Unidirectional or Bidirectional
  // Concurrent Copy transactions in user request
  uint32_t trans_cnt = trans_list.size();
  size_t max_size = size_list_.back();
  uint32_t size_len = size_list_.size();

  // Lists of buffers, pools, agents and signals
  // used to run copy requests
  vector<void*> buf_list;
  vector<hsa_agent_t> dev_list;
  vector<uint32_t> dev_idx_list;
  vector<hsa_signal_t> sig_list;
  vector<hsa_amd_memory_pool_t> pool_list;

  // Allocate resources for the various transactions
  AllocateConcurrentCopyResources(bidir, trans_list,
                                  buf_list, dev_list,
                                  dev_idx_list, sig_list, pool_list);

  // Common variables used in different loops
  void* buf_src;
  void* buf_dst;
  hsa_agent_t src_dev;
  hsa_agent_t dst_dev;
  hsa_signal_t signal;
  
  // Signa to trigger all copy requests to wait
  // until allowed to begin
  hsa_signal_t sig_grp_start;
  err_ = hsa_signal_create(1, 0, NULL, &sig_grp_start);
  ErrorCheck(err_);

  // Bind the number of iterations
  uint32_t iterations = GetIterationNum();

  // Iterate through the differnt buffer sizes to
  // compute the bandwidth as determined by copy
  for (uint32_t idx = 0; idx < size_len; idx++) {

    // This should not be happening
    size_t curr_size = size_list_[idx];
    if (curr_size > max_size) {
      break;
    }

    std::vector< std::vector<double> > gpu_time_list(trans_cnt, std::vector<double>());
    for (uint32_t it = 0; it < iterations; it++) {
      if (it % 2) {
        printf(".");
        fflush(stdout);
      }

      // Set group trigger signal
      hsa_signal_store_relaxed(sig_grp_start, 1);

      // Update signal value to one before submitting copy requests
      uint32_t sig_idx = 0;
      uint32_t sig_cnt = sig_list.size();
      for (sig_idx = 0; sig_idx < sig_cnt; sig_idx++) {
        signal = sig_list[sig_idx];
        hsa_signal_store_relaxed(signal, 1);
      }

      // Submit copy operations in batch mode
      uint32_t rsrc_idx = 0;
      uint32_t cpy_cnt = (bidir) ? (trans_cnt * 2) : trans_cnt;
      for (uint32_t cpy_idx = 0; cpy_idx < cpy_cnt; cpy_idx++) {

        sig_idx = cpy_idx;
        rsrc_idx = cpy_idx * 2;
        signal = sig_list[sig_idx + 0];
        buf_src = buf_list[rsrc_idx + 0];
        buf_dst = buf_list[rsrc_idx + 1];
        src_dev = dev_list[rsrc_idx + 0];
        dst_dev = dev_list[rsrc_idx + 1];

        err_ = hsa_amd_memory_async_copy(buf_dst, dst_dev,
                                         buf_src, src_dev, curr_size,
                                         1, &sig_grp_start, signal);
        ErrorCheck(err_);
      }
      
      // Set group trigger signal
      hsa_signal_store_relaxed(sig_grp_start, 0);

      // Wait for the copy operations to complete
      WaitForCopyCompletion(sig_list);

      // Retrieve times for each copy operation
      hsa_signal_t signal_rev;
      for (uint32_t tidx = 0; tidx < trans_cnt; tidx++) {
        sig_idx = (bidir) ? (tidx * 2) : (tidx);
        signal = sig_list[sig_idx + 0];
        signal_rev = (bidir) ? (sig_list[sig_idx + 1]) : signal;
        double temp = GetGpuCopyTime(bidir, signal, signal_rev);
        std::vector<double>& gpu_time = gpu_time_list[tidx];
        gpu_time.push_back(temp);
      }
    }
    
    // Update time taken to copy a particular size
    // Get Gpu min and mean copy times
    for (uint32_t tidx = 0; tidx < trans_cnt; tidx++) {
      async_trans_t& trans = trans_list[tidx];
      std::vector<double>& gpu_time = gpu_time_list[tidx];
      double min_time = GetMinTime(gpu_time);
      double mean_time = GetMeanTime(gpu_time);
      trans.gpu_min_time_.push_back(min_time);
      trans.gpu_avg_time_.push_back(mean_time);
      gpu_time.clear();
    }
  }

  // Free up buffers and signal objects used in copy operation
  sig_list.push_back(sig_grp_start);
  ReleaseSignals(sig_list);
  ReleaseBuffers(buf_list);
}

475
476
477
478
479
480
void RocmBandwidthTest::RunCopyBenchmark(async_trans_t& trans) {

  // Bind if this transaction is bidirectional
  bool bidir = trans.copy.bidir_;

  // Initialize size of buffer to equal the largest element of allocation
481
  size_t max_size = size_list_.back();
482
483
484
485
486
487
488
489
490
491
  uint32_t size_len = size_list_.size();

  // Bind to resources such as pool and agents that are involved
  // in both forward and reverse copy operations
  void* buf_src_fwd;
  void* buf_dst_fwd;
  void* buf_src_rev;
  void* buf_dst_rev;
  hsa_signal_t signal_fwd;
  hsa_signal_t signal_rev;
492
  hsa_signal_t signal_start_bidir;
493
494
495
496
497
498
499
500
501
502
503
504
505
506
  uint32_t src_idx = trans.copy.src_idx_;
  uint32_t dst_idx = trans.copy.dst_idx_;
  uint32_t src_dev_idx_fwd = pool_list_[src_idx].agent_index_;
  uint32_t dst_dev_idx_fwd = pool_list_[dst_idx].agent_index_;
  uint32_t src_dev_idx_rev = dst_dev_idx_fwd;
  uint32_t dst_dev_idx_rev = src_dev_idx_fwd;
  hsa_amd_memory_pool_t src_pool_fwd = trans.copy.src_pool_;
  hsa_amd_memory_pool_t dst_pool_fwd = trans.copy.dst_pool_;
  hsa_amd_memory_pool_t src_pool_rev = dst_pool_fwd;
  hsa_amd_memory_pool_t dst_pool_rev = src_pool_fwd;
  hsa_agent_t src_agent_fwd = pool_list_[src_idx].owner_agent_;
  hsa_agent_t dst_agent_fwd = pool_list_[dst_idx].owner_agent_;
  hsa_agent_t src_agent_rev = dst_agent_fwd;
  hsa_agent_t dst_agent_rev = src_agent_fwd;
507
508
  std::vector<void*> buffer_list;
  std::vector<hsa_signal_t> signal_list;
509

510
511
  // Allocate buffers for forward path of unidirectional
  // or bidirectional copy
512
513
  AllocateCopyBuffers(max_size,
                      buf_src_fwd, src_pool_fwd,
514
                      buf_dst_fwd, dst_pool_fwd);
515

516
517
518
519
520
521
522
523
524
525
526
  // Create a signal to wait on copy operation
  // @TODO: replace it with a signal pool call
  err_ = hsa_signal_create(1, 0, NULL, &signal_fwd);
  ErrorCheck(err_);

  // Collect resources to be released later
  signal_list.push_back(signal_fwd);
  buffer_list.push_back(buf_src_fwd);
  buffer_list.push_back(buf_dst_fwd);

  // Allocate buffers for reverse path of bidirectional copy
527
528
529
  if (bidir) {
    AllocateCopyBuffers(max_size,
                        buf_src_rev, src_pool_rev,
530
                        buf_dst_rev, dst_pool_rev);
531
532
533

    // Create a signal to begin bidir copy operations
    // @TODO: replace it with a signal pool call
534
535
    err_ = hsa_signal_create(1, 0, NULL, &signal_rev);
    ErrorCheck(err_);
536
537
    err_ = hsa_signal_create(1, 0, NULL, &signal_start_bidir);
    ErrorCheck(err_);
538
539
540
541
542
  
    signal_list.push_back(signal_rev);
    signal_list.push_back(signal_start_bidir);
    buffer_list.push_back(buf_src_rev);
    buffer_list.push_back(buf_dst_rev);
543
544
  }

545
  // Initialize source buffers with data that could be verified
546
547
548
549
550
  InitializeSrcBuffer(max_size, buf_src_fwd,
                      src_dev_idx_fwd, src_agent_fwd);
  if (bidir) {
    InitializeSrcBuffer(max_size, buf_src_rev,
                        src_dev_idx_rev, src_agent_rev);
551
552
  }

553
554
555
556
557
558
559
560
561
  // Setup access to destination buffers for
  // both unidirectional and bidirectional copies
  AcquirePoolAcceses(src_dev_idx_fwd, src_agent_fwd, buf_src_fwd,
                     dst_dev_idx_fwd, dst_agent_fwd, buf_dst_fwd);
  if (bidir) {
    AcquirePoolAcceses(src_dev_idx_rev, src_agent_rev, buf_src_rev,
                       dst_dev_idx_rev, dst_agent_rev, buf_dst_rev);
  }
    
562
563
564
565
566
567
568
569
  // Bind the number of iterations
  uint32_t iterations = GetIterationNum();

  // Iterate through the differnt buffer sizes to
  // compute the bandwidth as determined by copy
  for (uint32_t idx = 0; idx < size_len; idx++) {
    
    // This should not be happening
570
    size_t curr_size = size_list_[idx];
571
572
573
574
    if (curr_size > max_size) {
      break;
    }

575
    bool verify = true;
576
577
578
579
580
581
582
583
584
585
586
    std::vector<double> cpu_time;
    std::vector<double> gpu_time;
    for (uint32_t it = 0; it < iterations; it++) {
      if (it % 2) {
        printf(".");
        fflush(stdout);
      }

      hsa_signal_store_relaxed(signal_fwd, 1);
      if (bidir) {
        hsa_signal_store_relaxed(signal_rev, 1);
587
        hsa_signal_store_relaxed(signal_start_bidir, 1);
588
589
590
591
592
593
594
595
      }

      // Create a timer object and reset signals
      PerfTimer timer;
      uint32_t index = timer.CreateTimer();

      // Start the timer and launch forward copy operation
      timer.StartTimer(index);
596
597
598
599
600
601
602
603
604
605
      if (bidir == false) {
        err_ = hsa_amd_memory_async_copy(buf_dst_fwd, dst_agent_fwd,
                                         buf_src_fwd, src_agent_fwd,
                                         curr_size, 0, NULL, signal_fwd);
      } else {
        err_ = hsa_amd_memory_async_copy(buf_dst_fwd, dst_agent_fwd,
                                         buf_src_fwd, src_agent_fwd,
                                         curr_size, 1, &signal_start_bidir,
                                         signal_fwd);
      }
606
607
608
609
610
611
      ErrorCheck(err_);

      // Launch reverse copy operation if it is bidirectional
      if (bidir) {
        err_ = hsa_amd_memory_async_copy(buf_dst_rev, dst_agent_rev,
                                         buf_src_rev, src_agent_rev,
612
613
                                         curr_size, 1, &signal_start_bidir,
                                         signal_rev);
614
615
        ErrorCheck(err_);
      }
616
617
618
619
620
      
      // Signal the bidir copies to begin
      if (bidir) {
        hsa_signal_store_relaxed(signal_start_bidir, 0);
      }
621

622
      WaitForCopyCompletion(signal_list);
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

      // Stop the timer object
      timer.StopTimer(index);

      // Push the time taken for copy into a vector of copy times
      cpu_time.push_back(timer.ReadTimer(index));

      // Collect time from the signal(s)
      if (print_cpu_time_ == false) {
        if (trans.copy.uses_gpu_) {
          double temp = GetGpuCopyTime(bidir, signal_fwd, signal_rev);
          gpu_time.push_back(temp);
        }
      }

638
      if (validate_) {
639
640
        verify = ValidateDstBuffer(max_size, curr_size, buf_dst_fwd,
                                   dst_dev_idx_fwd, dst_agent_fwd);
641
642
643
      }
    }

644
645
646
647
648
649
650
651
652
653
654
    // Collecting Cpu time. Capture verify failures if any
    // Get min and mean copy times and collect them into Cpu
    // time list
    double min_time = 0;
    double mean_time = 0;
    if (print_cpu_time_) {
      min_time = (verify) ? GetMinTime(cpu_time) : VALIDATE_COPY_OP_FAILURE;
      mean_time = (verify) ? GetMeanTime(cpu_time) : VALIDATE_COPY_OP_FAILURE;
      trans.cpu_min_time_.push_back(min_time);
      trans.cpu_avg_time_.push_back(mean_time);
    }
655

656
657
658
    // Collecting Gpu time. Capture verify failures if any
    // Get min and mean copy times and collect them into Gpu
    // time list
659
660
    if (print_cpu_time_ == false) {
      if (trans.copy.uses_gpu_) {
661
662
        min_time = (verify) ? GetMinTime(gpu_time) : VALIDATE_COPY_OP_FAILURE;
        mean_time = (verify) ? GetMeanTime(gpu_time) : VALIDATE_COPY_OP_FAILURE;
663
664
        trans.gpu_min_time_.push_back(min_time);
        trans.gpu_avg_time_.push_back(mean_time);
665
666
      }
    }
667
    verify = true;
668
669
670
671
672
673
674

    // Clear the stack of cpu times
    cpu_time.clear();
    gpu_time.clear();
  }

  // Free up buffers and signal objects used in copy operation
675
676
  ReleaseSignals(signal_list);
  ReleaseBuffers(buffer_list);
677
678
679
680
681
682
683
684
685
686
}

void RocmBandwidthTest::Run() {

  // Enable profiling of Async Copy Activity
  if (print_cpu_time_ == false) {
    err_ = hsa_amd_profiling_async_copy_enable(true);
    ErrorCheck(err_);
  }

687
688
689
690
691
692
693
694
695
696
  if ((req_concurrent_copy_bidir_ == REQ_CONCURRENT_COPY_BIDIR) ||
      (req_concurrent_copy_unidir_ == REQ_CONCURRENT_COPY_UNIDIR)) {
    bool bidir = (req_concurrent_copy_bidir_ == REQ_CONCURRENT_COPY_BIDIR);
    RunConcurrentCopyBenchmark(bidir, trans_list_);
    ComputeCopyTime(trans_list_);
    err_ = hsa_amd_profiling_async_copy_enable(false);
    ErrorCheck(err_);
    return;
  }

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
  // Iterate through the list of transactions and execute them
  uint32_t trans_size = trans_list_.size();
  for (uint32_t idx = 0; idx < trans_size; idx++) {
    async_trans_t& trans = trans_list_[idx];
    if ((trans.req_type_ == REQ_COPY_BIDIR) ||
        (trans.req_type_ == REQ_COPY_UNIDIR) ||
        (trans.req_type_ == REQ_COPY_ALL_BIDIR) ||
        (trans.req_type_ == REQ_COPY_ALL_UNIDIR)) {
      RunCopyBenchmark(trans);
      ComputeCopyTime(trans);
    }
    if ((trans.req_type_ == REQ_READ) ||
        (trans.req_type_ == REQ_WRITE)) {
      RunIOBenchmark(trans);
    }
  }

  // Disable profiling of Async Copy Activity
  if (print_cpu_time_ == false) {
    err_ = hsa_amd_profiling_async_copy_enable(false);
    ErrorCheck(err_);
  }

}

void RocmBandwidthTest::Close() {
Ramesh Errabolu's avatar
Ramesh Errabolu committed
723
724
725
726
727
728
729
730
731
732

  if (init_src_ != NULL) {
    hsa_signal_destroy(init_signal_);
    hsa_amd_memory_pool_free(init_src_);
  }

  if (validate_) {
    hsa_amd_memory_pool_free(validate_dst_);
  }

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
  hsa_status_t status = hsa_shut_down();
  ErrorCheck(status);
  return;
}

// Sets up the bandwidth test object to enable running
// the various test scenarios requested by user. The
// things this proceedure takes care of are:
//    
//    Parse user arguments
//    Discover RocR Device Topology
//    Determine validity of requested test scenarios
//    Build the list of transactions to execute
//    Miscellaneous
//
void RocmBandwidthTest::SetUp() {

  // Parse user arguments
  ParseArguments();

  // Validate input parameters
  bool status = ValidateArguments();
  if (status == false) {
    PrintHelpScreen();
    exit(1);
  }

  // Build list of transactions (copy, read, write) to execute
  status = BuildTransList();
  if (status == false) {
    PrintHelpScreen();
    exit(1);
  }
}

RocmBandwidthTest::RocmBandwidthTest(int argc, char** argv) : BaseTest() {
  
  usr_argc_ = argc;
  usr_argv_ = argv;
  
  pool_index_ = 0;
  cpu_index_ = -1;
  agent_index_ = 0;
  
  req_read_ = REQ_INVALID;
  req_write_ = REQ_INVALID;
779
780
  req_version_ = REQ_INVALID;
  req_topology_ = REQ_INVALID;
781
782
783
784
  req_copy_bidir_ = REQ_INVALID;
  req_copy_unidir_ = REQ_INVALID;
  req_copy_all_bidir_ = REQ_INVALID;
  req_copy_all_unidir_ = REQ_INVALID;
785
786
  req_concurrent_copy_bidir_ = REQ_INVALID;
  req_concurrent_copy_unidir_ = REQ_INVALID;
787
788
  
  access_matrix_ = NULL;
789
  link_type_matrix_ = NULL;
790
  active_agents_list_ = NULL;
791
  link_weight_matrix_ = NULL;
792
  
793
  init_ = false;
794
  latency_ = false;
795
  validate_ = false;
796
  print_cpu_time_ = false;
797
  
798
  // Set initial value to 11.231926 in case
799
  // user does not have a preference
800
  init_val_ = 11.231926;
801
802
  init_src_ = NULL;
  validate_dst_ = NULL;
803

804
  // Initialize version of the test
805
  version_.major_id = 2;
806
  version_.minor_id = 3;
807
  version_.step_id = 11;
808
809
  version_.reserved = 0;

810
  bw_iter_cnt_ = getenv("ROCM_BW_ITER_CNT");
811
812
  bw_default_run_ = getenv("ROCM_BW_DEFAULT_RUN");
  bw_blocking_run_ = getenv("ROCR_BW_RUN_BLOCKING");
813
814
  skip_cpu_fine_grain_ = getenv("ROCM_SKIP_CPU_FINE_GRAINED_POOL");
  skip_gpu_coarse_grain_ = getenv("ROCM_SKIP_GPU_COARSE_GRAINED_POOL");
815

816
817
818
819
820
821
822
823
  if (bw_iter_cnt_ != NULL) {
    int32_t num = atoi(bw_iter_cnt_);
    if (num < 0) {
      std::cout << "Value of ROCM_BW_ITER_CNT can't be negative: " << num << std::endl;
    }
    set_num_iteration(num);
  }

824
  exit_value_ = 0;
825
826
}

827
828
829
830
831
832
833
RocmBandwidthTest::~RocmBandwidthTest() {

  delete access_matrix_;
  delete link_type_matrix_;
  delete link_weight_matrix_;
  delete active_agents_list_;
}
834

835
836
837
838
839
840
841
842
843
std::string RocmBandwidthTest::GetVersion() const {

  std::stringstream stream;
  stream << version_.major_id << ".";
  stream << version_.minor_id << ".";
  stream << version_.step_id;
  return stream.str();
}