rocm_bandwidth_test.cpp 28.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
////////////////////////////////////////////////////////////////////////////////
//
// The University of Illinois/NCSA
// Open Source License (NCSA)
// 
// Copyright (c) 2014-2015, Advanced Micro Devices, Inc. All rights reserved.
// 
// Developed by:
// 
//                 AMD Research and AMD HSA Software Development
// 
//                 Advanced Micro Devices, Inc.
// 
//                 www.amd.com
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal with the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
// 
//  - Redistributions of source code must retain the above copyright notice,
//    this list of conditions and the following disclaimers.
//  - Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimers in
//    the documentation and/or other materials provided with the distribution.
//  - Neither the names of Advanced Micro Devices, Inc,
//    nor the names of its contributors may be used to endorse or promote
//    products derived from this Software without specific prior written
//    permission.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
// OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS WITH THE SOFTWARE.
//
////////////////////////////////////////////////////////////////////////////////

#include "common.hpp"
#include "rocm_bandwidth_test.hpp"

#include <stdlib.h>
#include <assert.h>
#include <algorithm>
#include <unistd.h>
#include <cctype>
51
#include <cmath>
52
#include <sstream>
53
#include <limits>
54
55

// The values are in megabytes at allocation time
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
const size_t RocmBandwidthTest::SIZE_LIST[] = { 1 * 1024,
                                2 * 1024, 4 * 1024, 8 * 1024,
                                16 * 1024, 32 * 1024, 64 * 1024,
                                128 * 1024, 256 * 1024, 512 * 1024,
                                1 * 1024 * 1024, 2 * 1024 * 1024,
                                4 * 1024 * 1024, 8 * 1024 * 1024,
                                16 * 1024 * 1024, 32 * 1024 * 1024,
                                64 * 1024 * 1024, 128 * 1024 * 1024,
                                256 * 1024 * 1024, 512 * 1024  * 1024};

const size_t RocmBandwidthTest::LATENCY_SIZE_LIST[] = { 1,
                                2, 4, 8,
                                16, 32, 64,
                                128, 256, 512,
                                1 * 1024, 2 * 1024,
                                4 * 1024, 8 * 1024,
                                16 * 1024, 32 * 1024,
                                64 * 1024, 128 * 1024,
                                256 * 1024, 512 * 1024 };
75
76

uint32_t RocmBandwidthTest::GetIterationNum() {
77
  return (validate_) ? 1 : (num_iteration_ * 1.2 + 1);
78
79
80
81
82
83
84
85
86
87
88
89
90
91
}

void RocmBandwidthTest::AcquireAccess(hsa_agent_t agent, void* ptr) {
  err_ = hsa_amd_agents_allow_access(1, &agent, NULL, ptr);
  ErrorCheck(err_);
}

void RocmBandwidthTest::AcquirePoolAcceses(uint32_t src_dev_idx,
                                   hsa_agent_t src_agent, void* src,
                                   uint32_t dst_dev_idx,
                                   hsa_agent_t dst_agent, void* dst) {

  // determine which one is a cpu and call acquire on the other agent
  hsa_device_type_t src_dev_type = agent_list_[src_dev_idx].device_type_;
92
  hsa_device_type_t dst_dev_type = agent_list_[dst_dev_idx].device_type_;
93
  if (src_dev_type == HSA_DEVICE_TYPE_GPU) {
94
    AcquireAccess(src_agent, dst);
95
96
97
  }

  if (dst_dev_type == HSA_DEVICE_TYPE_GPU) {
98
    AcquireAccess(dst_agent, src);
99
  }
100

101
  return;
102
}
103
104
105
  
void RocmBandwidthTest::InitializeSrcBuffer(size_t size, void* buf_cpy,
                                     uint32_t cpy_dev_idx, hsa_agent_t cpy_agent) {
106
107

  // Allocate host buffers and setup accessibility for copy operation
108
109
110
  if (init_src_ == NULL) {
    err_ = hsa_amd_memory_pool_allocate(sys_pool_, size, 0, (void**)&init_src_);
    ErrorCheck(err_);
111
112
113
114
115
    long double* src_buf = (long double*) init_src_;
    uint32_t count = (size / sizeof(long double));
    for (uint32_t idx = 0; idx < count; idx++) {
      src_buf[idx] = (init_) ? init_val_ : sin(idx);
    }
116
117
118
    err_ = hsa_signal_create(0, 0, NULL, &init_signal_);
    ErrorCheck(err_);
  }
119

120
  // If copying agent is a CPU, use memcpy to initialize copy buffer
121
  hsa_device_type_t cpy_dev_type = agent_list_[cpy_dev_idx].device_type_;
122
123
  if (cpy_dev_type == HSA_DEVICE_TYPE_CPU) {
    memcpy(buf_cpy, init_src_, size);
124
125
    return;
  }
126

127
128
129
130
131
132
133
  // Copying device is a Gpu, setup buffer access
  // before copying initialization buffer
  AcquireAccess(cpy_agent, init_src_);
  hsa_signal_store_relaxed(init_signal_, 1);
  copy_buffer(buf_cpy, cpy_agent,
              init_src_, cpu_agent_,
              size, init_signal_);
134
135
136
137
138
  return;
}
  
bool RocmBandwidthTest::ValidateDstBuffer(size_t max_size, size_t curr_size, void* buf_cpy,
                                          uint32_t cpy_dev_idx, hsa_agent_t cpy_agent) {
139

140
141
142
143
144
  // Allocate host buffers and setup accessibility for copy operation
  if (validate_dst_ == NULL) {
    err_ = hsa_amd_memory_pool_allocate(sys_pool_, max_size, 0, (void**)&validate_dst_);
    ErrorCheck(err_);
  }
145

146
  // If Copy device is a Gpu setup buffer access
147
  memset(validate_dst_, ~(0x23), curr_size);
148
149
150
151
152
153
154
155
156
157
158
159
160
  hsa_device_type_t cpy_dev_type = agent_list_[cpy_dev_idx].device_type_;
  if (cpy_dev_type == HSA_DEVICE_TYPE_GPU) {
    AcquireAccess(cpy_agent, validate_dst_);
    hsa_signal_store_relaxed(init_signal_, 1);
    copy_buffer(validate_dst_, cpu_agent_,
                buf_cpy, cpy_agent,
                curr_size, init_signal_);
  } else {

    // Copying device is a CPU, copy dst buffer
    // into validation buffer
    memcpy(validate_dst_, buf_cpy, curr_size);
  }
161

162
  // Compare initialization buffer with validation buffer
163
164
165
166
167
  err_ = (hsa_status_t)memcmp(init_src_, validate_dst_, curr_size);
  if (err_ != HSA_STATUS_SUCCESS) {
    exit_value_ = err_;
  }
  return (err_ == HSA_STATUS_SUCCESS);
168
169
}

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
void RocmBandwidthTest::AllocateConcurrentCopyResources(bool bidir,
                                vector<async_trans_t>& trans_list,
                                vector<void*>& buf_list,
                                vector<hsa_agent_t>& dev_list,
                                vector<uint32_t>& dev_idx_list,
                                vector<hsa_signal_t>& sig_list,
                                vector<hsa_amd_memory_pool_t>& pool_list) {

  // Number of Unidirectional or Bidirectional
  // Concurrent Copy transactions in user request
  uint32_t trans_cnt = trans_list.size();
  size_t max_size = size_list_.back();

  // Common variables used in different loops
  void* buf_src;
  void* buf_dst;
  uint32_t src_idx;
  uint32_t dst_idx;
  hsa_signal_t signal;
  hsa_agent_t src_dev;
  hsa_agent_t dst_dev;
  uint32_t src_dev_idx;
  uint32_t dst_dev_idx;
  hsa_amd_memory_pool_t src_pool;
  hsa_amd_memory_pool_t dst_pool;

  // Allocate buffers for the various transactions
  for (uint32_t idx = 0; idx < trans_cnt; idx++) {
    async_trans_t& trans = trans_list[idx];
    src_idx = trans.copy.src_idx_;
    dst_idx = trans.copy.dst_idx_;
    src_pool = trans.copy.src_pool_;
    dst_pool = trans.copy.dst_pool_;
    src_dev = pool_list_[src_idx].owner_agent_;
    dst_dev = pool_list_[dst_idx].owner_agent_;
    src_dev_idx = pool_list_[src_idx].agent_index_;
    dst_dev_idx = pool_list_[dst_idx].agent_index_;
    
    // Allocate buffers and signal for forward copy operation
    AllocateCopyBuffers(max_size,
                        buf_src, src_pool,
                        buf_dst, dst_pool);
    
    err_ = hsa_signal_create(1, 0, NULL, &signal);
    ErrorCheck(err_);

    // Acquire access to destination buffers
    AcquirePoolAcceses(src_dev_idx, src_dev, buf_src,
                       dst_dev_idx, dst_dev, buf_dst);
    
    sig_list.push_back(signal);
    buf_list.push_back(buf_src);
    buf_list.push_back(buf_dst);
    dev_list.push_back(src_dev);
    dev_list.push_back(dst_dev);
    dev_idx_list.push_back(src_dev_idx);
    dev_idx_list.push_back(dst_dev_idx);
227
228
229
  
    // Initialize source buffers with data that could be verified
    InitializeSrcBuffer(max_size, buf_src, src_dev_idx, src_dev);
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    
    // For bidirectional copies allocate buffers
    // and signal for reverse direction as well
    if (bidir) {
      AllocateCopyBuffers(max_size,
                          buf_src, dst_pool,
                          buf_dst, src_pool);
      err_ = hsa_signal_create(1, 0, NULL, &signal);
      ErrorCheck(err_);

      // Acquire access to destination buffers
      AcquirePoolAcceses(dst_dev_idx, dst_dev, buf_src,
                         src_dev_idx, src_dev, buf_dst);
      
      sig_list.push_back(signal);
      buf_list.push_back(buf_src);
      buf_list.push_back(buf_dst);
      dev_list.push_back(dst_dev);
      dev_list.push_back(src_dev);
      dev_idx_list.push_back(dst_dev_idx);
      dev_idx_list.push_back(src_dev_idx);
251
252
253
    
      // Initialize source buffers with data that could be verified
      InitializeSrcBuffer(max_size, buf_src, dst_dev_idx, dst_dev);
254
255
256
257
    }
  }
}

258
void RocmBandwidthTest::AllocateCopyBuffers(size_t size,
259
                        void*& src, hsa_amd_memory_pool_t src_pool,
260
                        void*& dst, hsa_amd_memory_pool_t dst_pool) {
261
262
263
264
265
266

  // Allocate buffers in src and dst pools for forward copy
  err_ = hsa_amd_memory_pool_allocate(src_pool, size, 0, &src);
  ErrorCheck(err_);
  err_ = hsa_amd_memory_pool_allocate(dst_pool, size, 0, &dst);
  ErrorCheck(err_);
267
}
268

269
void RocmBandwidthTest::ReleaseBuffers(std::vector<void*>& buffer_list) {
270

271
272
273
274
275
  for(uint32_t idx = 0; idx < buffer_list.size(); idx++) {
    void* buffer = buffer_list[idx];
    err_ = hsa_amd_memory_pool_free(buffer);
    ErrorCheck(err_);
  }
276
277
}

278
void RocmBandwidthTest::ReleaseSignals(std::vector<hsa_signal_t>& signal_list) {
279

280
281
282
  for(uint32_t idx = 0; idx < signal_list.size(); idx++) {
    hsa_signal_t signal = signal_list[idx];
    err_ = hsa_signal_destroy(signal);
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    ErrorCheck(err_);
  }
}

double RocmBandwidthTest::GetGpuCopyTime(bool bidir,
                                 hsa_signal_t signal_fwd,
                                 hsa_signal_t signal_rev) {

  // Obtain time taken for forward copy
  hsa_amd_profiling_async_copy_time_t async_time_fwd = {0};
  err_= hsa_amd_profiling_get_async_copy_time(signal_fwd, &async_time_fwd);
  ErrorCheck(err_);
  if (bidir == false) {
    return(async_time_fwd.end - async_time_fwd.start);
  }

  hsa_amd_profiling_async_copy_time_t async_time_rev = {0};
  err_= hsa_amd_profiling_get_async_copy_time(signal_rev, &async_time_rev);
  ErrorCheck(err_);
302
303
  
  // Compute time taken to copy
304
305
  double start = min(async_time_fwd.start, async_time_rev.start);
  double end = max(async_time_fwd.end, async_time_rev.end);
306
307
308
309
310
311
312
313
314
315
316
317
318
319
  double copy_time = end - start;

  // Forward copy completed before Reverse began
  if (async_time_fwd.end < async_time_rev.start) {
    return (copy_time - (async_time_rev.start - async_time_fwd.end));
  }

  // Reverse copy completed before Forward began
  if (async_time_rev.end < async_time_fwd.start) {
    return (copy_time - (async_time_fwd.start - async_time_rev.end));
  }

  // Forward and Reverse copies overlapped
  return copy_time;
320
321
}

322
323
324
325
326
327
328
329
330
331
332
333
334
void RocmBandwidthTest::WaitForCopyCompletion(vector<hsa_signal_t>& signal_list) {

  hsa_wait_state_t policy = (bw_blocking_run_ == NULL) ?
                             HSA_WAIT_STATE_ACTIVE : HSA_WAIT_STATE_BLOCKED;

  uint32_t size = signal_list.size();
  for (uint32_t idx = 0; idx < size; idx++) {
    hsa_signal_t signal = signal_list[idx];
    while (hsa_signal_wait_acquire(signal, HSA_SIGNAL_CONDITION_LT,
                                   1, uint64_t(-1), policy));
  }
}

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
void RocmBandwidthTest::copy_buffer(void* dst, hsa_agent_t dst_agent,
                            void* src, hsa_agent_t src_agent,
                            size_t size, hsa_signal_t signal) {

  // Copy from src into dst buffer
  err_ = hsa_amd_memory_async_copy(dst, dst_agent,
                                   src, src_agent,
                                   size, 0, NULL, signal);
  ErrorCheck(err_);

  // Wait for the forward copy operation to complete
  while (hsa_signal_wait_acquire(signal, HSA_SIGNAL_CONDITION_LT, 1,
                                     uint64_t(-1), HSA_WAIT_STATE_ACTIVE));
}

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
void RocmBandwidthTest::RunConcurrentCopyBenchmark(bool bidir,
                                                   vector<async_trans_t>& trans_list) {

  // Number of Unidirectional or Bidirectional
  // Concurrent Copy transactions in user request
  uint32_t trans_cnt = trans_list.size();
  size_t max_size = size_list_.back();
  uint32_t size_len = size_list_.size();

  // Lists of buffers, pools, agents and signals
  // used to run copy requests
  vector<void*> buf_list;
  vector<hsa_agent_t> dev_list;
  vector<uint32_t> dev_idx_list;
  vector<hsa_signal_t> sig_list;
  vector<hsa_amd_memory_pool_t> pool_list;

  // Allocate resources for the various transactions
  AllocateConcurrentCopyResources(bidir, trans_list,
                                  buf_list, dev_list,
                                  dev_idx_list, sig_list, pool_list);

  // Common variables used in different loops
  void* buf_src;
  void* buf_dst;
  hsa_agent_t src_dev;
  hsa_agent_t dst_dev;
  hsa_signal_t signal;
  
  // Signa to trigger all copy requests to wait
  // until allowed to begin
  hsa_signal_t sig_grp_start;
  err_ = hsa_signal_create(1, 0, NULL, &sig_grp_start);
  ErrorCheck(err_);

  // Bind the number of iterations
  uint32_t iterations = GetIterationNum();

  // Iterate through the differnt buffer sizes to
  // compute the bandwidth as determined by copy
  for (uint32_t idx = 0; idx < size_len; idx++) {

    // This should not be happening
    size_t curr_size = size_list_[idx];
    if (curr_size > max_size) {
      break;
    }

    std::vector< std::vector<double> > gpu_time_list(trans_cnt, std::vector<double>());
    for (uint32_t it = 0; it < iterations; it++) {
      if (it % 2) {
        printf(".");
        fflush(stdout);
      }

      // Set group trigger signal
      hsa_signal_store_relaxed(sig_grp_start, 1);

      // Update signal value to one before submitting copy requests
      uint32_t sig_idx = 0;
      uint32_t sig_cnt = sig_list.size();
      for (sig_idx = 0; sig_idx < sig_cnt; sig_idx++) {
        signal = sig_list[sig_idx];
        hsa_signal_store_relaxed(signal, 1);
      }

      // Submit copy operations in batch mode
      uint32_t rsrc_idx = 0;
      uint32_t cpy_cnt = (bidir) ? (trans_cnt * 2) : trans_cnt;
      for (uint32_t cpy_idx = 0; cpy_idx < cpy_cnt; cpy_idx++) {

        sig_idx = cpy_idx;
        rsrc_idx = cpy_idx * 2;
        signal = sig_list[sig_idx + 0];
        buf_src = buf_list[rsrc_idx + 0];
        buf_dst = buf_list[rsrc_idx + 1];
        src_dev = dev_list[rsrc_idx + 0];
        dst_dev = dev_list[rsrc_idx + 1];

        err_ = hsa_amd_memory_async_copy(buf_dst, dst_dev,
                                         buf_src, src_dev, curr_size,
                                         1, &sig_grp_start, signal);
        ErrorCheck(err_);
      }
      
      // Set group trigger signal
      hsa_signal_store_relaxed(sig_grp_start, 0);

      // Wait for the copy operations to complete
      WaitForCopyCompletion(sig_list);

      // Retrieve times for each copy operation
      hsa_signal_t signal_rev;
      for (uint32_t tidx = 0; tidx < trans_cnt; tidx++) {
        sig_idx = (bidir) ? (tidx * 2) : (tidx);
        signal = sig_list[sig_idx + 0];
        signal_rev = (bidir) ? (sig_list[sig_idx + 1]) : signal;
        double temp = GetGpuCopyTime(bidir, signal, signal_rev);
        std::vector<double>& gpu_time = gpu_time_list[tidx];
        gpu_time.push_back(temp);
      }
    }
    
    // Update time taken to copy a particular size
    // Get Gpu min and mean copy times
    for (uint32_t tidx = 0; tidx < trans_cnt; tidx++) {
      async_trans_t& trans = trans_list[tidx];
      std::vector<double>& gpu_time = gpu_time_list[tidx];
      double min_time = GetMinTime(gpu_time);
      double mean_time = GetMeanTime(gpu_time);
      trans.gpu_min_time_.push_back(min_time);
      trans.gpu_avg_time_.push_back(mean_time);
      gpu_time.clear();
    }
  }

  // Free up buffers and signal objects used in copy operation
  sig_list.push_back(sig_grp_start);
  ReleaseSignals(sig_list);
  ReleaseBuffers(buf_list);
}

472
473
474
475
476
477
void RocmBandwidthTest::RunCopyBenchmark(async_trans_t& trans) {

  // Bind if this transaction is bidirectional
  bool bidir = trans.copy.bidir_;

  // Initialize size of buffer to equal the largest element of allocation
478
  size_t max_size = size_list_.back();
479
480
481
482
483
484
485
486
487
488
  uint32_t size_len = size_list_.size();

  // Bind to resources such as pool and agents that are involved
  // in both forward and reverse copy operations
  void* buf_src_fwd;
  void* buf_dst_fwd;
  void* buf_src_rev;
  void* buf_dst_rev;
  hsa_signal_t signal_fwd;
  hsa_signal_t signal_rev;
489
  hsa_signal_t signal_start_bidir;
490
491
492
493
494
495
496
497
498
499
500
501
502
503
  uint32_t src_idx = trans.copy.src_idx_;
  uint32_t dst_idx = trans.copy.dst_idx_;
  uint32_t src_dev_idx_fwd = pool_list_[src_idx].agent_index_;
  uint32_t dst_dev_idx_fwd = pool_list_[dst_idx].agent_index_;
  uint32_t src_dev_idx_rev = dst_dev_idx_fwd;
  uint32_t dst_dev_idx_rev = src_dev_idx_fwd;
  hsa_amd_memory_pool_t src_pool_fwd = trans.copy.src_pool_;
  hsa_amd_memory_pool_t dst_pool_fwd = trans.copy.dst_pool_;
  hsa_amd_memory_pool_t src_pool_rev = dst_pool_fwd;
  hsa_amd_memory_pool_t dst_pool_rev = src_pool_fwd;
  hsa_agent_t src_agent_fwd = pool_list_[src_idx].owner_agent_;
  hsa_agent_t dst_agent_fwd = pool_list_[dst_idx].owner_agent_;
  hsa_agent_t src_agent_rev = dst_agent_fwd;
  hsa_agent_t dst_agent_rev = src_agent_fwd;
504
505
  std::vector<void*> buffer_list;
  std::vector<hsa_signal_t> signal_list;
506

507
508
  // Allocate buffers for forward path of unidirectional
  // or bidirectional copy
509
510
  AllocateCopyBuffers(max_size,
                      buf_src_fwd, src_pool_fwd,
511
                      buf_dst_fwd, dst_pool_fwd);
512

513
514
515
516
517
518
519
520
521
522
523
  // Create a signal to wait on copy operation
  // @TODO: replace it with a signal pool call
  err_ = hsa_signal_create(1, 0, NULL, &signal_fwd);
  ErrorCheck(err_);

  // Collect resources to be released later
  signal_list.push_back(signal_fwd);
  buffer_list.push_back(buf_src_fwd);
  buffer_list.push_back(buf_dst_fwd);

  // Allocate buffers for reverse path of bidirectional copy
524
525
526
  if (bidir) {
    AllocateCopyBuffers(max_size,
                        buf_src_rev, src_pool_rev,
527
                        buf_dst_rev, dst_pool_rev);
528
529
530

    // Create a signal to begin bidir copy operations
    // @TODO: replace it with a signal pool call
531
532
    err_ = hsa_signal_create(1, 0, NULL, &signal_rev);
    ErrorCheck(err_);
533
534
    err_ = hsa_signal_create(1, 0, NULL, &signal_start_bidir);
    ErrorCheck(err_);
535
536
537
538
539
  
    signal_list.push_back(signal_rev);
    signal_list.push_back(signal_start_bidir);
    buffer_list.push_back(buf_src_rev);
    buffer_list.push_back(buf_dst_rev);
540
541
  }

542
  // Initialize source buffers with data that could be verified
543
544
545
546
547
  InitializeSrcBuffer(max_size, buf_src_fwd,
                      src_dev_idx_fwd, src_agent_fwd);
  if (bidir) {
    InitializeSrcBuffer(max_size, buf_src_rev,
                        src_dev_idx_rev, src_agent_rev);
548
549
  }

550
551
552
553
554
555
556
557
558
  // Setup access to destination buffers for
  // both unidirectional and bidirectional copies
  AcquirePoolAcceses(src_dev_idx_fwd, src_agent_fwd, buf_src_fwd,
                     dst_dev_idx_fwd, dst_agent_fwd, buf_dst_fwd);
  if (bidir) {
    AcquirePoolAcceses(src_dev_idx_rev, src_agent_rev, buf_src_rev,
                       dst_dev_idx_rev, dst_agent_rev, buf_dst_rev);
  }
    
559
560
561
562
563
564
565
566
  // Bind the number of iterations
  uint32_t iterations = GetIterationNum();

  // Iterate through the differnt buffer sizes to
  // compute the bandwidth as determined by copy
  for (uint32_t idx = 0; idx < size_len; idx++) {
    
    // This should not be happening
567
    size_t curr_size = size_list_[idx];
568
569
570
571
    if (curr_size > max_size) {
      break;
    }

572
    bool verify = true;
573
574
575
576
577
578
579
580
581
582
583
    std::vector<double> cpu_time;
    std::vector<double> gpu_time;
    for (uint32_t it = 0; it < iterations; it++) {
      if (it % 2) {
        printf(".");
        fflush(stdout);
      }

      hsa_signal_store_relaxed(signal_fwd, 1);
      if (bidir) {
        hsa_signal_store_relaxed(signal_rev, 1);
584
        hsa_signal_store_relaxed(signal_start_bidir, 1);
585
586
587
588
589
590
591
592
      }

      // Create a timer object and reset signals
      PerfTimer timer;
      uint32_t index = timer.CreateTimer();

      // Start the timer and launch forward copy operation
      timer.StartTimer(index);
593
594
595
596
597
598
599
600
601
602
      if (bidir == false) {
        err_ = hsa_amd_memory_async_copy(buf_dst_fwd, dst_agent_fwd,
                                         buf_src_fwd, src_agent_fwd,
                                         curr_size, 0, NULL, signal_fwd);
      } else {
        err_ = hsa_amd_memory_async_copy(buf_dst_fwd, dst_agent_fwd,
                                         buf_src_fwd, src_agent_fwd,
                                         curr_size, 1, &signal_start_bidir,
                                         signal_fwd);
      }
603
604
605
606
607
608
      ErrorCheck(err_);

      // Launch reverse copy operation if it is bidirectional
      if (bidir) {
        err_ = hsa_amd_memory_async_copy(buf_dst_rev, dst_agent_rev,
                                         buf_src_rev, src_agent_rev,
609
610
                                         curr_size, 1, &signal_start_bidir,
                                         signal_rev);
611
612
        ErrorCheck(err_);
      }
613
614
615
616
617
      
      // Signal the bidir copies to begin
      if (bidir) {
        hsa_signal_store_relaxed(signal_start_bidir, 0);
      }
618

619
      WaitForCopyCompletion(signal_list);
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

      // Stop the timer object
      timer.StopTimer(index);

      // Push the time taken for copy into a vector of copy times
      cpu_time.push_back(timer.ReadTimer(index));

      // Collect time from the signal(s)
      if (print_cpu_time_ == false) {
        if (trans.copy.uses_gpu_) {
          double temp = GetGpuCopyTime(bidir, signal_fwd, signal_rev);
          gpu_time.push_back(temp);
        }
      }

635
      if (validate_) {
636
637
        verify = ValidateDstBuffer(max_size, curr_size, buf_dst_fwd,
                                   dst_dev_idx_fwd, dst_agent_fwd);
638
639
640
      }
    }

641
642
    // Get Cpu min and mean times for copy
    // Push them into the Cpu time list
643
644
645
646
647
    trans.cpu_min_time_.push_back(GetMinTime(cpu_time));
    trans.cpu_avg_time_.push_back(GetMeanTime(cpu_time));

    if (print_cpu_time_ == false) {
      if (trans.copy.uses_gpu_) {
648
        // Get Gpu min and mean copy times
649
650
651
        // Push them into the Gpu time list
        double min_time = (verify) ? GetMinTime(gpu_time) : VALIDATE_COPY_OP_FAILURE;
        double mean_time = (verify) ? GetMeanTime(gpu_time) : VALIDATE_COPY_OP_FAILURE;
652
653
        trans.gpu_min_time_.push_back(min_time);
        trans.gpu_avg_time_.push_back(mean_time);
654
655
      }
    }
656
    verify = true;
657
658
659
660
661
662
663

    // Clear the stack of cpu times
    cpu_time.clear();
    gpu_time.clear();
  }

  // Free up buffers and signal objects used in copy operation
664
665
  ReleaseSignals(signal_list);
  ReleaseBuffers(buffer_list);
666
667
668
669
670
671
672
673
674
675
}

void RocmBandwidthTest::Run() {

  // Enable profiling of Async Copy Activity
  if (print_cpu_time_ == false) {
    err_ = hsa_amd_profiling_async_copy_enable(true);
    ErrorCheck(err_);
  }

676
677
678
679
680
681
682
683
684
685
  if ((req_concurrent_copy_bidir_ == REQ_CONCURRENT_COPY_BIDIR) ||
      (req_concurrent_copy_unidir_ == REQ_CONCURRENT_COPY_UNIDIR)) {
    bool bidir = (req_concurrent_copy_bidir_ == REQ_CONCURRENT_COPY_BIDIR);
    RunConcurrentCopyBenchmark(bidir, trans_list_);
    ComputeCopyTime(trans_list_);
    err_ = hsa_amd_profiling_async_copy_enable(false);
    ErrorCheck(err_);
    return;
  }

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
  // Iterate through the list of transactions and execute them
  uint32_t trans_size = trans_list_.size();
  for (uint32_t idx = 0; idx < trans_size; idx++) {
    async_trans_t& trans = trans_list_[idx];
    if ((trans.req_type_ == REQ_COPY_BIDIR) ||
        (trans.req_type_ == REQ_COPY_UNIDIR) ||
        (trans.req_type_ == REQ_COPY_ALL_BIDIR) ||
        (trans.req_type_ == REQ_COPY_ALL_UNIDIR)) {
      RunCopyBenchmark(trans);
      ComputeCopyTime(trans);
    }
    if ((trans.req_type_ == REQ_READ) ||
        (trans.req_type_ == REQ_WRITE)) {
      RunIOBenchmark(trans);
    }
  }

  // Disable profiling of Async Copy Activity
  if (print_cpu_time_ == false) {
    err_ = hsa_amd_profiling_async_copy_enable(false);
    ErrorCheck(err_);
  }

}

void RocmBandwidthTest::Close() {
Ramesh Errabolu's avatar
Ramesh Errabolu committed
712
713
714
715
716
717
718
719
720
721

  if (init_src_ != NULL) {
    hsa_signal_destroy(init_signal_);
    hsa_amd_memory_pool_free(init_src_);
  }

  if (validate_) {
    hsa_amd_memory_pool_free(validate_dst_);
  }

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
  hsa_status_t status = hsa_shut_down();
  ErrorCheck(status);
  return;
}

// Sets up the bandwidth test object to enable running
// the various test scenarios requested by user. The
// things this proceedure takes care of are:
//    
//    Parse user arguments
//    Discover RocR Device Topology
//    Determine validity of requested test scenarios
//    Build the list of transactions to execute
//    Miscellaneous
//
void RocmBandwidthTest::SetUp() {

  // Parse user arguments
  ParseArguments();

  // Validate input parameters
  bool status = ValidateArguments();
  if (status == false) {
    PrintHelpScreen();
    exit(1);
  }

  // Build list of transactions (copy, read, write) to execute
  status = BuildTransList();
  if (status == false) {
    PrintHelpScreen();
    exit(1);
  }
}

RocmBandwidthTest::RocmBandwidthTest(int argc, char** argv) : BaseTest() {
  
  usr_argc_ = argc;
  usr_argv_ = argv;
  
  pool_index_ = 0;
  cpu_index_ = -1;
  agent_index_ = 0;
  
  req_read_ = REQ_INVALID;
  req_write_ = REQ_INVALID;
768
769
  req_version_ = REQ_INVALID;
  req_topology_ = REQ_INVALID;
770
771
772
773
  req_copy_bidir_ = REQ_INVALID;
  req_copy_unidir_ = REQ_INVALID;
  req_copy_all_bidir_ = REQ_INVALID;
  req_copy_all_unidir_ = REQ_INVALID;
774
775
  req_concurrent_copy_bidir_ = REQ_INVALID;
  req_concurrent_copy_unidir_ = REQ_INVALID;
776
777
  
  access_matrix_ = NULL;
778
  link_type_matrix_ = NULL;
779
  active_agents_list_ = NULL;
780
  link_weight_matrix_ = NULL;
781
  
782
  init_ = false;
783
  latency_ = false;
784
  validate_ = false;
785
  print_cpu_time_ = false;
786
  
787
  // Set initial value to 11.231926 in case
788
  // user does not have a preference
789
  init_val_ = 11.231926;
790
791
  init_src_ = NULL;
  validate_dst_ = NULL;
792

793
  // Initialize version of the test
794
  version_.major_id = 2;
795
  version_.minor_id = 3;
796
  version_.step_id = 6;
797
798
  version_.reserved = 0;

799
  bw_iter_cnt_ = getenv("ROCM_BW_ITER_CNT");
800
801
  bw_default_run_ = getenv("ROCM_BW_DEFAULT_RUN");
  bw_blocking_run_ = getenv("ROCR_BW_RUN_BLOCKING");
802
803
  skip_cpu_fine_grain_ = getenv("ROCM_SKIP_CPU_FINE_GRAINED_POOL");
  skip_gpu_coarse_grain_ = getenv("ROCM_SKIP_GPU_COARSE_GRAINED_POOL");
804

805
806
807
808
809
810
811
812
  if (bw_iter_cnt_ != NULL) {
    int32_t num = atoi(bw_iter_cnt_);
    if (num < 0) {
      std::cout << "Value of ROCM_BW_ITER_CNT can't be negative: " << num << std::endl;
    }
    set_num_iteration(num);
  }

813
  exit_value_ = 0;
814
815
}

816
817
818
819
820
821
822
RocmBandwidthTest::~RocmBandwidthTest() {

  delete access_matrix_;
  delete link_type_matrix_;
  delete link_weight_matrix_;
  delete active_agents_list_;
}
823

824
825
826
827
828
829
830
831
832
std::string RocmBandwidthTest::GetVersion() const {

  std::stringstream stream;
  stream << version_.major_id << ".";
  stream << version_.minor_id << ".";
  stream << version_.step_id;
  return stream.str();
}