README.md 1.4 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59


# 下载jax和jaxlib

```
wget https://cancon.hpccube.com:65024/directlink/4/jax/DAS1.1/jaxlib-0.4.23+das1.1.git387bd43.abi1.dtk2404-cp39-cp39-manylinux_2_31_x86_64.whl
wget https://cancon.hpccube.com:65024/directlink/4/jax/DAS1.1/jax-0.4.23+das1.1.git387bd43.abi1.dtk2404-py3-none-any.whl

```


# conda 环境

```
conda create -n pymc3 python=3.9
conda activate pymc3
pip install jax-0.4.23+das1.1.git387bd43.abi1.dtk2404-py3-none-any.whl
pip install jaxlib-0.4.23+das1.1.git387bd43.abi1.dtk2404-cp39-cp39-manylinux_2_31_x86_64.whl
pip install  pymc==5.9.1
pip install numpyro==0.14.0
pip install seaborn==0.13.2
pip install scipy==1.12.0 -i https://pypi.tuna.tsinghua.edu.cn/simple 
```


# 测试jax是否在gpu上可行:
  ```
import jax
import pymc3 as pm
jax.default_backend()
jax.devices()
```

# 测试采样时间,GPU负载等情况

```
import jax
import pymc as pm
import numpy as np
import pytensor as pt
pt.config.floatX = "float32"
np.random.seed(123) 
n =10000
X = np.random.randn(n) 
Y =3* X + np.random.randn(n)
# 定义PyMC3模型
with pm.Model() as model:
    alpha = pm.Normal('alpha', mu=0, sigma=10)     
    beta = pm.Normal('beta', mu=0, sigma=10)     
    sigma = pm.HalfNormal('sigma', sigma=1)
    mu = alpha + beta * X
    Y_obs = pm.Normal('Y_obs', mu=mu, sigma=sigma, observed=Y)
    trace = pm.sample(1000, nuts_sampler="numpyro",return_inferencedata=False)
print(pm.summary(trace))
  

```