# 下载jax和jaxlib ``` wget https://cancon.hpccube.com:65024/directlink/4/jax/DAS1.1/jaxlib-0.4.23+das1.1.git387bd43.abi1.dtk2404-cp39-cp39-manylinux_2_31_x86_64.whl wget https://cancon.hpccube.com:65024/directlink/4/jax/DAS1.1/jax-0.4.23+das1.1.git387bd43.abi1.dtk2404-py3-none-any.whl ``` # conda 环境 ``` conda create -n pymc3 python=3.9 conda activate pymc3 pip install jax-0.4.23+das1.1.git387bd43.abi1.dtk2404-py3-none-any.whl pip install jaxlib-0.4.23+das1.1.git387bd43.abi1.dtk2404-cp39-cp39-manylinux_2_31_x86_64.whl pip install pymc==5.9.1 pip install numpyro==0.14.0 pip install seaborn==0.13.2 pip install scipy==1.12.0 -i https://pypi.tuna.tsinghua.edu.cn/simple ``` # 测试jax是否在gpu上可行: ``` import jax import pymc3 as pm jax.default_backend() jax.devices() ``` # 测试采样时间,GPU负载等情况 ``` import jax import pymc as pm import numpy as np import pytensor as pt pt.config.floatX = "float32" np.random.seed(123) n =10000 X = np.random.randn(n) Y =3* X + np.random.randn(n) # 定义PyMC3模型 with pm.Model() as model: alpha = pm.Normal('alpha', mu=0, sigma=10) beta = pm.Normal('beta', mu=0, sigma=10) sigma = pm.HalfNormal('sigma', sigma=1) mu = alpha + beta * X Y_obs = pm.Normal('Y_obs', mu=mu, sigma=sigma, observed=Y) trace = pm.sample(1000, nuts_sampler="numpyro",return_inferencedata=False) print(pm.summary(trace)) ```