save_load.py 6.97 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
WenmuZhou's avatar
WenmuZhou committed
21
22
import pickle
import six
LDOUBLEV's avatar
LDOUBLEV committed
23

WenmuZhou's avatar
WenmuZhou committed
24
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
25

littletomatodonkey's avatar
littletomatodonkey committed
26
27
from ppocr.utils.logging import get_logger

28
__all__ = ['load_model']
LDOUBLEV's avatar
LDOUBLEV committed
29
30


WenmuZhou's avatar
WenmuZhou committed
31
def _mkdir_if_not_exist(path, logger):
LDOUBLEV's avatar
LDOUBLEV committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


47
def load_model(config, model, optimizer=None, model_type='det'):
LDOUBLEV's avatar
LDOUBLEV committed
48
49
50
    """
    load model from checkpoint or pretrained_model
    """
littletomatodonkey's avatar
littletomatodonkey committed
51
    logger = get_logger()
YukSing's avatar
YukSing committed
52
53
54
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
WenmuZhou's avatar
WenmuZhou committed
55
    best_model_dict = {}
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

    if model_type == 'vqa':
        checkpoints = config['Architecture']['Backbone']['checkpoints']
        # load vqa method metric
        if checkpoints:
            if os.path.exists(os.path.join(checkpoints, 'metric.states')):
                with open(os.path.join(checkpoints, 'metric.states'),
                          'rb') as f:
                    states_dict = pickle.load(f) if six.PY2 else pickle.load(
                        f, encoding='latin1')
                best_model_dict = states_dict.get('best_model_dict', {})
                if 'epoch' in states_dict:
                    best_model_dict['start_epoch'] = states_dict['epoch'] + 1
            logger.info("resume from {}".format(checkpoints))

            if optimizer is not None:
                if checkpoints[-1] in ['/', '\\']:
                    checkpoints = checkpoints[:-1]
                if os.path.exists(checkpoints + '.pdopt'):
                    optim_dict = paddle.load(checkpoints + '.pdopt')
                    optimizer.set_state_dict(optim_dict)
                else:
                    logger.warning(
                        "{}.pdopt is not exists, params of optimizer is not loaded".
                        format(checkpoints))
        return best_model_dict

LDOUBLEV's avatar
LDOUBLEV committed
83
    if checkpoints:
84
        if checkpoints.endswith('.pdparams'):
85
            checkpoints = checkpoints.replace('.pdparams', '')
86
        assert os.path.exists(checkpoints + ".pdparams"), \
WenmuZhou's avatar
WenmuZhou committed
87
            "The {}.pdparams does not exists!".format(checkpoints)
88

89
90
91
92
93
94
        # load params from trained model
        params = paddle.load(checkpoints + '.pdparams')
        state_dict = model.state_dict()
        new_state_dict = {}
        for key, value in state_dict.items():
            if key not in params:
95
96
                logger.warning("{} not in loaded params {} !".format(
                    key, params.keys()))
WenmuZhou's avatar
WenmuZhou committed
97
                continue
98
99
100
101
102
            pre_value = params[key]
            if list(value.shape) == list(pre_value.shape):
                new_state_dict[key] = pre_value
            else:
                logger.warning(
103
104
                    "The shape of model params {} {} not matched with loaded params shape {} !".
                    format(key, value.shape, pre_value.shape))
105
106
        model.set_state_dict(new_state_dict)

WenmuZhou's avatar
WenmuZhou committed
107
        if optimizer is not None:
WenmuZhou's avatar
WenmuZhou committed
108
109
110
111
112
113
114
            if os.path.exists(checkpoints + '.pdopt'):
                optim_dict = paddle.load(checkpoints + '.pdopt')
                optimizer.set_state_dict(optim_dict)
            else:
                logger.warning(
                    "{}.pdopt is not exists, params of optimizer is not loaded".
                    format(checkpoints))
WenmuZhou's avatar
WenmuZhou committed
115
116
117
118
119
120
121
122
123
124

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1
        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
125
        load_pretrained_params(model, pretrained_model)
126
    else:
WenmuZhou's avatar
WenmuZhou committed
127
128
        logger.info('train from scratch')
    return best_model_dict
LDOUBLEV's avatar
LDOUBLEV committed
129
130


LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
131
def load_pretrained_params(model, path):
132
    logger = get_logger()
133
    if path.endswith('.pdparams'):
134
135
        path = path.replace('.pdparams', '')
    assert os.path.exists(path + ".pdparams"), \
WenmuZhou's avatar
WenmuZhou committed
136
        "The {}.pdparams does not exists!".format(path)
137
138

    params = paddle.load(path + '.pdparams')
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
139
140
    state_dict = model.state_dict()
    new_state_dict = {}
tink2123's avatar
tink2123 committed
141
142
143
    for k1 in params.keys():
        if k1 not in state_dict.keys():
            logger.warning("The pretrained params {} not in model".format(k1))
LDOUBLEV's avatar
LDOUBLEV committed
144
        else:
tink2123's avatar
tink2123 committed
145
146
147
148
149
150
            if list(state_dict[k1].shape) == list(params[k1].shape):
                new_state_dict[k1] = params[k1]
            else:
                logger.warning(
                    "The shape of model params {} {} not matched with loaded params {} {} !".
                    format(k1, state_dict[k1].shape, k1, params[k1].shape))
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
151
    model.set_state_dict(new_state_dict)
152
    logger.info("load pretrain successful from {}".format(path))
LDOUBLEV's avatar
LDOUBLEV committed
153
    return model
Double_V's avatar
Double_V committed
154

155

156
def save_model(model,
WenmuZhou's avatar
WenmuZhou committed
157
158
159
               optimizer,
               model_path,
               logger,
160
               config,
WenmuZhou's avatar
WenmuZhou committed
161
162
163
               is_best=False,
               prefix='ppocr',
               **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
164
165
166
    """
    save model to the target path
    """
WenmuZhou's avatar
WenmuZhou committed
167
168
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
WenmuZhou's avatar
WenmuZhou committed
169
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
170
171
172
173
174
175
176
177
178
    if config['Architecture']["model_type"] != 'vqa':
        paddle.save(model.state_dict(), model_prefix + '.pdparams')
        metric_prefix = model_prefix
    else:
        if config['Global']['distributed']:
            model._layers.backbone.model.save_pretrained(model_prefix)
        else:
            model.backbone.model.save_pretrained(model_prefix)
        metric_prefix = os.path.join(model_prefix, 'metric')
WenmuZhou's avatar
WenmuZhou committed
179
    # save metric and config
zhoujun's avatar
zhoujun committed
180
181
    with open(metric_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
WenmuZhou's avatar
WenmuZhou committed
182
183
184
185
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))