save_load.py 4.08 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
WenmuZhou's avatar
WenmuZhou committed
21
22
import pickle
import six
LDOUBLEV's avatar
LDOUBLEV committed
23

WenmuZhou's avatar
WenmuZhou committed
24
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
25

WenmuZhou's avatar
WenmuZhou committed
26
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
LDOUBLEV's avatar
LDOUBLEV committed
27
28


WenmuZhou's avatar
WenmuZhou committed
29
def _mkdir_if_not_exist(path, logger):
LDOUBLEV's avatar
LDOUBLEV committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


45
def load_dygraph_pretrain(model, logger=None, path=None):
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
WenmuZhou's avatar
WenmuZhou committed
49
50
    param_state_dict = paddle.load(path + '.pdparams')
    model.set_state_dict(param_state_dict)
WenmuZhou's avatar
WenmuZhou committed
51
    return
LDOUBLEV's avatar
LDOUBLEV committed
52

WenmuZhou's avatar
WenmuZhou committed
53
54

def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
LDOUBLEV's avatar
LDOUBLEV committed
55
56
57
    """
    load model from checkpoint or pretrained_model
    """
YukSing's avatar
YukSing committed
58
59
60
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
WenmuZhou's avatar
WenmuZhou committed
61
    best_model_dict = {}
LDOUBLEV's avatar
LDOUBLEV committed
62
    if checkpoints:
WenmuZhou's avatar
WenmuZhou committed
63
64
65
66
        assert os.path.exists(checkpoints + ".pdparams"), \
            "Given dir {}.pdparams not exist.".format(checkpoints)
        assert os.path.exists(checkpoints + ".pdopt"), \
            "Given dir {}.pdopt not exist.".format(checkpoints)
WenmuZhou's avatar
WenmuZhou committed
67
68
        para_dict = paddle.load(checkpoints + '.pdparams')
        opti_dict = paddle.load(checkpoints + '.pdopt')
WenmuZhou's avatar
WenmuZhou committed
69
        model.set_state_dict(para_dict)
WenmuZhou's avatar
WenmuZhou committed
70
71
72
73
74
75
76
77
78
79
80
81
82
        if optimizer is not None:
            optimizer.set_state_dict(opti_dict)

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1

        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
dyning's avatar
dyning committed
83
84
        if not isinstance(pretrained_model, list):
            pretrained_model = [pretrained_model]
85
86
        for pretrained in pretrained_model:
            load_dygraph_pretrain(model, logger, path=pretrained)
dyning's avatar
dyning committed
87
88
            logger.info("load pretrained model from {}".format(
                pretrained_model))
89
    else:
WenmuZhou's avatar
WenmuZhou committed
90
91
        logger.info('train from scratch')
    return best_model_dict
LDOUBLEV's avatar
LDOUBLEV committed
92
93


94
def save_model(model,
WenmuZhou's avatar
WenmuZhou committed
95
96
97
98
99
100
               optimizer,
               model_path,
               logger,
               is_best=False,
               prefix='ppocr',
               **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
101
102
103
    """
    save model to the target path
    """
WenmuZhou's avatar
WenmuZhou committed
104
105
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
106
    paddle.save(model.state_dict(), model_prefix + '.pdparams')
WenmuZhou's avatar
WenmuZhou committed
107
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
WenmuZhou's avatar
WenmuZhou committed
108
109
110
111
112
113
114
115

    # save metric and config
    with open(model_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))