program.py 14.5 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
import sys
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
23
24
25
26
27
28
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
29
30
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
31
32
33
34
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
35

dyning's avatar
dyning committed
36

LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
78
79
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
83
84
85
86
87

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
88
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
89
90
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
91
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
110
111
112
113
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
134
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
135
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
136
137
138
139
140
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
141
def train(config,
dyning's avatar
dyning committed
142
143
144
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
145
146
147
148
149
150
151
152
153
154
155
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
          vdl_writer=None):
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
159
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
WenmuZhou's avatar
WenmuZhou committed
160

dyning's avatar
dyning committed
161
    global_step = 0
LDOUBLEV's avatar
LDOUBLEV committed
162
163
164
165
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
166
167
168
169
170
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
171
172
173
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
174
175
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
176
177
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
178
179
180
181
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
182
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
183
184
    model.train()

tink2123's avatar
tink2123 committed
185
186
    use_srn = config['Architecture']['algorithm'] == "SRN"

WenmuZhou's avatar
WenmuZhou committed
187
188
189
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
tink2123's avatar
tink2123 committed
190
        start_epoch = 1
WenmuZhou's avatar
WenmuZhou committed
191

tink2123's avatar
tink2123 committed
192
    for epoch in range(start_epoch, epoch_num + 1):
193
194
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
WenmuZhou's avatar
WenmuZhou committed
195
196
197
198
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
199
        for idx, batch in enumerate(train_dataloader()):
WenmuZhou's avatar
WenmuZhou committed
200
            train_reader_cost += time.time() - batch_start
WenmuZhou's avatar
WenmuZhou committed
201
202
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
203
            if use_srn:
tink2123's avatar
tink2123 committed
204
205
                others = batch[-4:]
                preds = model(images, others)
tink2123's avatar
tink2123 committed
206
                model_average = True
tink2123's avatar
tink2123 committed
207
208
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
209
210
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
dyning's avatar
dyning committed
211
            avg_loss.backward()
WenmuZhou's avatar
WenmuZhou committed
212
213
            optimizer.step()
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
214
215
216
217

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

dyning's avatar
dyning committed
218
219
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
220
221
222
223
224
225

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
226
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
227
228
229
                batch = [item.numpy() for item in batch]
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
230
231
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
232
233
234
235
236
237

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

238
239
240
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
241
                logs = train_stats.log()
WenmuZhou's avatar
WenmuZhou committed
242
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
243
244
245
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
WenmuZhou's avatar
WenmuZhou committed
246
                logger.info(strs)
WenmuZhou's avatar
WenmuZhou committed
247
248
249
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
WenmuZhou's avatar
WenmuZhou committed
250
251
252
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
253
254
255
256
257
258
259
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
260
261
262
263
264
265
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
                    use_srn=use_srn)
LDOUBLEV's avatar
LDOUBLEV committed
266
267
268
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
269
270
271

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
272
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
273
274
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
275
276
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
277
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
278
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
279
280
281
282
283
284
285
286
287
288
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
                        epoch=epoch)
LDOUBLEV's avatar
LDOUBLEV committed
289
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
290
291
292
293
294
295
296
297
298
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
tink2123's avatar
tink2123 committed
299
            optimizer.clear_grad()
300
            batch_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
                epoch=epoch)
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
                epoch=epoch)
LDOUBLEV's avatar
LDOUBLEV committed
321
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
322
323
324
325
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
326
327
328
    return


tink2123's avatar
tink2123 committed
329
330
def eval(model, valid_dataloader, post_process_class, eval_class,
         use_srn=False):
WenmuZhou's avatar
WenmuZhou committed
331
332
333
334
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
fix bug  
WenmuZhou committed
335
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
WenmuZhou's avatar
WenmuZhou committed
336
337
338
        for idx, batch in enumerate(valid_dataloader):
            if idx >= len(valid_dataloader):
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
339
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
340
            start = time.time()
tink2123's avatar
tink2123 committed
341
342

            if use_srn:
xiaoting's avatar
xiaoting committed
343
344
345
346
                others = batch[-4:]
                preds = model(images, others)
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
347
348
349
350
351
352
353

            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            post_result = post_process_class(preds, batch[1])
            total_time += time.time() - start
            # Evaluate the results of the current batch
            eval_class(post_result, batch)
WenmuZhou's avatar
fix bug  
WenmuZhou committed
354
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
355
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
356
357
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
358

WenmuZhou's avatar
fix bug  
WenmuZhou committed
359
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
360
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
361
362
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
363

tink2123's avatar
tink2123 committed
364

365
def preprocess(is_train=False):
licx's avatar
licx committed
366
367
368
369
370
371
372
373
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
374
375
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
376
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
377
        'CLS', 'PGNet'
WenmuZhou's avatar
WenmuZhou committed
378
    ]
licx's avatar
licx committed
379

WenmuZhou's avatar
WenmuZhou committed
380
381
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
382

dyning's avatar
dyning committed
383
    config['Global']['distributed'] = dist.get_world_size() != 1
384
385
386
387
388
389
390
391
392
393
394
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
dyning's avatar
dyning committed
395
396
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
397
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
398
399
400
401
402
403
404
405
406
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer