"deploy/vscode:/vscode.git/clone" did not exist on "6fc43d4b0469a8e05f76c41c631668be986ae131"
program.py 14.5 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
import sys
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
23
24
25
26
27
28
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
29
30
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
31
32
33
34
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
35

dyning's avatar
dyning committed
36

LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
78
79
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
83
84
85
86
87

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
88
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
89
90
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
91
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
110
111
112
113
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
134
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
135
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
136
137
138
139
140
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
141
def train(config,
dyning's avatar
dyning committed
142
143
144
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
145
146
147
148
149
150
151
152
153
154
155
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
          vdl_writer=None):
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
159
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
WenmuZhou's avatar
WenmuZhou committed
160

dyning's avatar
dyning committed
161
    global_step = 0
LDOUBLEV's avatar
LDOUBLEV committed
162
163
164
165
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
166
167
168
169
170
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
171
172
173
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
174
175
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
176
177
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
178
179
180
181
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
182
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
183
184
    model.train()

tink2123's avatar
tink2123 committed
185
186
    use_srn = config['Architecture']['algorithm'] == "SRN"

WenmuZhou's avatar
WenmuZhou committed
187
188
189
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
tink2123's avatar
tink2123 committed
190
        start_epoch = 1
WenmuZhou's avatar
WenmuZhou committed
191

tink2123's avatar
tink2123 committed
192
    for epoch in range(start_epoch, epoch_num + 1):
193
194
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
WenmuZhou's avatar
WenmuZhou committed
195
196
197
198
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
199
        for idx, batch in enumerate(train_dataloader):
WenmuZhou's avatar
WenmuZhou committed
200
            train_reader_cost += time.time() - batch_start
WenmuZhou's avatar
WenmuZhou committed
201
202
203
204
            if idx >= len(train_dataloader):
                break
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
205
            if use_srn:
tink2123's avatar
tink2123 committed
206
207
                others = batch[-4:]
                preds = model(images, others)
tink2123's avatar
tink2123 committed
208
                model_average = True
tink2123's avatar
tink2123 committed
209
210
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
211
212
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
dyning's avatar
dyning committed
213
            avg_loss.backward()
WenmuZhou's avatar
WenmuZhou committed
214
215
            optimizer.step()
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
216
217
218
219

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

dyning's avatar
dyning committed
220
221
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
222
223
224
225
226
227

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
228
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
229
230
231
                batch = [item.numpy() for item in batch]
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
232
233
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
234
235
236
237
238
239

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

dyning's avatar
dyning committed
240
241
            if dist.get_rank(
            ) == 0 and global_step > 0 and global_step % print_batch_step == 0:
WenmuZhou's avatar
WenmuZhou committed
242
                logs = train_stats.log()
WenmuZhou's avatar
WenmuZhou committed
243
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
244
245
246
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
WenmuZhou's avatar
WenmuZhou committed
247
                logger.info(strs)
WenmuZhou's avatar
WenmuZhou committed
248
249
250
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
WenmuZhou's avatar
WenmuZhou committed
251
252
253
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
254
255
256
257
258
259
260
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
261
262
263
264
265
266
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
                    use_srn=use_srn)
LDOUBLEV's avatar
LDOUBLEV committed
267
268
269
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
270
271
272

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
273
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
274
275
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
276
277
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
278
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
279
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
280
281
282
283
284
285
286
287
288
289
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
                        epoch=epoch)
LDOUBLEV's avatar
LDOUBLEV committed
290
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
291
292
293
294
295
296
297
298
299
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
tink2123's avatar
tink2123 committed
300
            optimizer.clear_grad()
301
            batch_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
                epoch=epoch)
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
                epoch=epoch)
LDOUBLEV's avatar
LDOUBLEV committed
322
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
323
324
325
326
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
327
328
329
    return


tink2123's avatar
tink2123 committed
330
331
def eval(model, valid_dataloader, post_process_class, eval_class,
         use_srn=False):
WenmuZhou's avatar
WenmuZhou committed
332
333
334
335
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
fix bug  
WenmuZhou committed
336
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
WenmuZhou's avatar
WenmuZhou committed
337
338
339
        for idx, batch in enumerate(valid_dataloader):
            if idx >= len(valid_dataloader):
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
340
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
341
            start = time.time()
tink2123's avatar
tink2123 committed
342
343

            if use_srn:
xiaoting's avatar
xiaoting committed
344
345
346
347
                others = batch[-4:]
                preds = model(images, others)
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
348
349
350
351
352
353
354

            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            post_result = post_process_class(preds, batch[1])
            total_time += time.time() - start
            # Evaluate the results of the current batch
            eval_class(post_result, batch)
WenmuZhou's avatar
fix bug  
WenmuZhou committed
355
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
356
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
357
358
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
359

WenmuZhou's avatar
fix bug  
WenmuZhou committed
360
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
361
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
362
363
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
364

tink2123's avatar
tink2123 committed
365

366
def preprocess(is_train=False):
licx's avatar
licx committed
367
368
369
370
371
372
373
374
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
375
376
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
377
378
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
        'CLS', 'PG'
WenmuZhou's avatar
WenmuZhou committed
379
    ]
licx's avatar
licx committed
380

WenmuZhou's avatar
WenmuZhou committed
381
382
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
383

dyning's avatar
dyning committed
384
    config['Global']['distributed'] = dist.get_world_size() != 1
385
386
387
388
389
390
391
392
393
394
395
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
dyning's avatar
dyning committed
396
397
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
398
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
399
400
401
402
403
404
405
406
407
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer