ocr_rec.cpp 6.4 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
WenmuZhou's avatar
WenmuZhou committed
20
                         cv::Mat &img, Classifier *cls) {
littletomatodonkey's avatar
littletomatodonkey committed
21
22
23
24
25
26
27
28
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
littletomatodonkey's avatar
littletomatodonkey committed
29
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
WenmuZhou's avatar
WenmuZhou committed
30
31
32
    if (cls != nullptr) {
      crop_img = cls->Run(crop_img);
    }
littletomatodonkey's avatar
littletomatodonkey committed
33
34
35
36
37
38
39
40

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    this->resize_op_.Run(crop_img, resize_img, wh_ratio);

    this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                            this->is_scale_);

littletomatodonkey's avatar
littletomatodonkey committed
41
    std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
littletomatodonkey's avatar
littletomatodonkey committed
42

littletomatodonkey's avatar
littletomatodonkey committed
43
    this->permute_op_.Run(&resize_img, input.data());
littletomatodonkey's avatar
littletomatodonkey committed
44

45
    // Inference.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    if (this->use_zero_copy_run_) {
      auto input_names = this->predictor_->GetInputNames();
      auto input_t = this->predictor_->GetInputTensor(input_names[0]);
      input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
      input_t->copy_from_cpu(input.data());
      this->predictor_->ZeroCopyRun();
    } else {
      paddle::PaddleTensor input_t;
      input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
      input_t.data =
          paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
      input_t.dtype = PaddleDType::FLOAT32;
      std::vector<paddle::PaddleTensor> outputs;
      this->predictor_->Run({input_t}, &outputs, 1);
    }
littletomatodonkey's avatar
littletomatodonkey committed
61

WenmuZhou's avatar
WenmuZhou committed
62
    std::vector<float> predict_batch;
littletomatodonkey's avatar
littletomatodonkey committed
63
64
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
WenmuZhou's avatar
WenmuZhou committed
65
    auto predict_shape = output_t->shape();
66

WenmuZhou's avatar
WenmuZhou committed
67
    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
littletomatodonkey's avatar
littletomatodonkey committed
68
                                  std::multiplies<int>());
WenmuZhou's avatar
WenmuZhou committed
69
    predict_batch.resize(out_num);
littletomatodonkey's avatar
littletomatodonkey committed
70

WenmuZhou's avatar
WenmuZhou committed
71
    output_t->copy_to_cpu(predict_batch.data());
littletomatodonkey's avatar
littletomatodonkey committed
72

WenmuZhou's avatar
WenmuZhou committed
73
74
    // ctc decode
    std::vector<std::string> str_res;
littletomatodonkey's avatar
littletomatodonkey committed
75
    int argmax_idx;
WenmuZhou's avatar
WenmuZhou committed
76
    int last_index = 0;
littletomatodonkey's avatar
littletomatodonkey committed
77
78
79
80
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

WenmuZhou's avatar
WenmuZhou committed
81
    for (int n = 0; n < predict_shape[1]; n++) {
littletomatodonkey's avatar
littletomatodonkey committed
82
      argmax_idx =
WenmuZhou's avatar
WenmuZhou committed
83
84
          int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                              &predict_batch[(n + 1) * predict_shape[2]]));
littletomatodonkey's avatar
littletomatodonkey committed
85
      max_value =
WenmuZhou's avatar
WenmuZhou committed
86
87
88
89
          float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                  &predict_batch[(n + 1) * predict_shape[2]]));

      if (argmax_idx > 0 && (not(i > 0 && argmax_idx == last_index))) {
littletomatodonkey's avatar
littletomatodonkey committed
90
91
        score += max_value;
        count += 1;
WenmuZhou's avatar
WenmuZhou committed
92
        str_res.push_back(label_list_[argmax_idx]);
littletomatodonkey's avatar
littletomatodonkey committed
93
      }
WenmuZhou's avatar
WenmuZhou committed
94
      last_index = argmax_idx;
littletomatodonkey's avatar
littletomatodonkey committed
95
96
    }
    score /= count;
WenmuZhou's avatar
WenmuZhou committed
97
98
99
    for (int i = 0; i < str_res.size(); i++) {
      std::cout << str_res[i];
    }
littletomatodonkey's avatar
littletomatodonkey committed
100
101
102
103
    std::cout << "\tscore: " << score << std::endl;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
104
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
littletomatodonkey's avatar
littletomatodonkey committed
105
  AnalysisConfig config;
WenmuZhou's avatar
WenmuZhou committed
106
  config.SetModel(model_dir + "/rec.pdmodel", model_dir + "/rec.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
107

littletomatodonkey's avatar
littletomatodonkey committed
108
109
110
111
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
112
113
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
114
115
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
116
    }
littletomatodonkey's avatar
littletomatodonkey committed
117
118
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
119

littletomatodonkey's avatar
littletomatodonkey committed
120
  // false for zero copy tensor
121
  // true for commom tensor
122
  config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
littletomatodonkey's avatar
littletomatodonkey committed
123
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
124
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
125
126
127
128

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey committed
129
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
130
131
132
133

  this->predictor_ = CreatePaddlePredictor(config);
}

littletomatodonkey's avatar
littletomatodonkey committed
134
135
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

WenmuZhou's avatar
WenmuZhou committed
189
} // namespace PaddleOCR