"vscode:/vscode.git/clone" did not exist on "71c046102ba80bea3628c25601649f3b0aab267b"
program.py 15.5 KB
Newer Older
MissPenguin's avatar
refine  
MissPenguin committed
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
LDOUBLEV's avatar
LDOUBLEV committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import os
LDOUBLEV's avatar
LDOUBLEV committed
20
import sys
21
import platform
LDOUBLEV's avatar
LDOUBLEV committed
22
23
import yaml
import time
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
import shutil
import paddle
import paddle.distributed as dist
from tqdm import tqdm
from argparse import ArgumentParser, RawDescriptionHelpFormatter

LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.stats import TrainingStats
from ppocr.utils.save_load import save_model
dyning's avatar
dyning committed
32
33
34
35
from ppocr.utils.utility import print_dict
from ppocr.utils.logging import get_logger
from ppocr.data import build_dataloader
import numpy as np
LDOUBLEV's avatar
LDOUBLEV committed
36

dyning's avatar
dyning committed
37

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
79
80
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
81
82
83
84
85
86
87
88

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
89
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
90
91
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
WenmuZhou's avatar
WenmuZhou committed
92
    merge_config(yaml.load(open(file_path, 'rb'), Loader=yaml.Loader))
LDOUBLEV's avatar
LDOUBLEV committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
111
112
113
114
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
WenmuZhou's avatar
WenmuZhou committed
135
        if use_gpu and not paddle.is_compiled_with_cuda():
WenmuZhou's avatar
WenmuZhou committed
136
            print(err)
LDOUBLEV's avatar
LDOUBLEV committed
137
138
139
140
141
            sys.exit(1)
    except Exception as e:
        pass


WenmuZhou's avatar
WenmuZhou committed
142
def train(config,
dyning's avatar
dyning committed
143
144
145
          train_dataloader,
          valid_dataloader,
          device,
WenmuZhou's avatar
WenmuZhou committed
146
147
148
149
150
151
152
153
154
155
156
          model,
          loss_class,
          optimizer,
          lr_scheduler,
          post_process_class,
          eval_class,
          pre_best_model_dict,
          logger,
          vdl_writer=None):
    cal_metric_during_train = config['Global'].get('cal_metric_during_train',
                                                   False)
LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
160
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
WenmuZhou's avatar
WenmuZhou committed
161

dyning's avatar
dyning committed
162
    global_step = 0
163
164
    if 'global_step' in pre_best_model_dict:
        global_step = pre_best_model_dict['global_step']
LDOUBLEV's avatar
LDOUBLEV committed
165
166
167
168
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
WenmuZhou's avatar
WenmuZhou committed
169
170
171
172
173
        if len(valid_dataloader) == 0:
            logger.info(
                'No Images in eval dataset, evaluation during training will be disabled'
            )
            start_eval_step = 1e111
LDOUBLEV's avatar
LDOUBLEV committed
174
175
176
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
177
178
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
179
180
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
WenmuZhou's avatar
WenmuZhou committed
181
182
183
184
    main_indicator = eval_class.main_indicator
    best_model_dict = {main_indicator: 0}
    best_model_dict.update(pre_best_model_dict)
    train_stats = TrainingStats(log_smooth_window, ['lr'])
tink2123's avatar
tink2123 committed
185
    model_average = False
WenmuZhou's avatar
WenmuZhou committed
186
187
    model.train()

tink2123's avatar
tink2123 committed
188
    use_srn = config['Architecture']['algorithm'] == "SRN"
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
189
190
191
192
    try: 
        model_type = config['Architecture']['model_type']
    except: 
        model_type = None
MissPenguin's avatar
refine  
MissPenguin committed
193

WenmuZhou's avatar
WenmuZhou committed
194
195
196
    if 'start_epoch' in best_model_dict:
        start_epoch = best_model_dict['start_epoch']
    else:
tink2123's avatar
tink2123 committed
197
        start_epoch = 1
WenmuZhou's avatar
WenmuZhou committed
198

tink2123's avatar
tink2123 committed
199
    for epoch in range(start_epoch, epoch_num + 1):
200
201
        train_dataloader = build_dataloader(
            config, 'Train', device, logger, seed=epoch)
WenmuZhou's avatar
WenmuZhou committed
202
203
204
205
        train_batch_cost = 0.0
        train_reader_cost = 0.0
        batch_sum = 0
        batch_start = time.time()
Jane-Ding's avatar
Jane-Ding committed
206
207
208
        max_iter = len(train_dataloader) - 1 if platform.system(
        ) == "Windows" else len(train_dataloader)
        for idx, batch in enumerate(train_dataloader):
WenmuZhou's avatar
WenmuZhou committed
209
            train_reader_cost += time.time() - batch_start
Jane-Ding's avatar
Jane-Ding committed
210
211
            if idx >= max_iter:
                break
WenmuZhou's avatar
WenmuZhou committed
212
213
            lr = optimizer.get_lr()
            images = batch[0]
tink2123's avatar
tink2123 committed
214
            if use_srn:
tink2123's avatar
tink2123 committed
215
                model_average = True
MissPenguin's avatar
refine  
MissPenguin committed
216
217
218
219
            if use_srn or model_type == 'table':
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
220
221
            loss = loss_class(preds, batch)
            avg_loss = loss['loss']
dyning's avatar
dyning committed
222
            avg_loss.backward()
WenmuZhou's avatar
WenmuZhou committed
223
224
            optimizer.step()
            optimizer.clear_grad()
WenmuZhou's avatar
WenmuZhou committed
225
226
227
228

            train_batch_cost += time.time() - batch_start
            batch_sum += len(images)

dyning's avatar
dyning committed
229
230
            if not isinstance(lr_scheduler, float):
                lr_scheduler.step()
WenmuZhou's avatar
WenmuZhou committed
231
232
233
234
235
236

            # logger and visualdl
            stats = {k: v.numpy().mean() for k, v in loss.items()}
            stats['lr'] = lr
            train_stats.update(stats)

LDOUBLEV's avatar
LDOUBLEV committed
237
            if cal_metric_during_train:  # only rec and cls need
WenmuZhou's avatar
WenmuZhou committed
238
                batch = [item.numpy() for item in batch]
MissPenguin's avatar
MissPenguin committed
239
240
241
242
243
                if model_type == 'table':
                    eval_class(preds, batch)
                else:
                    post_result = post_process_class(preds, batch[1])
                    eval_class(post_result, batch)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
244
245
                metric = eval_class.get_metric()
                train_stats.update(metric)
WenmuZhou's avatar
WenmuZhou committed
246
247
248
249
250
251

            if vdl_writer is not None and dist.get_rank() == 0:
                for k, v in train_stats.get().items():
                    vdl_writer.add_scalar('TRAIN/{}'.format(k), v, global_step)
                vdl_writer.add_scalar('TRAIN/lr', lr, global_step)

252
253
254
            if dist.get_rank() == 0 and (
                (global_step > 0 and global_step % print_batch_step == 0) or
                (idx >= len(train_dataloader) - 1)):
WenmuZhou's avatar
WenmuZhou committed
255
                logs = train_stats.log()
WenmuZhou's avatar
WenmuZhou committed
256
                strs = 'epoch: [{}/{}], iter: {}, {}, reader_cost: {:.5f} s, batch_cost: {:.5f} s, samples: {}, ips: {:.5f}'.format(
WenmuZhou's avatar
WenmuZhou committed
257
258
259
                    epoch, epoch_num, global_step, logs, train_reader_cost /
                    print_batch_step, train_batch_cost / print_batch_step,
                    batch_sum, batch_sum / train_batch_cost)
WenmuZhou's avatar
WenmuZhou committed
260
                logger.info(strs)
WenmuZhou's avatar
WenmuZhou committed
261
262
263
                train_batch_cost = 0.0
                train_reader_cost = 0.0
                batch_sum = 0
WenmuZhou's avatar
WenmuZhou committed
264
265
266
            # eval
            if global_step > start_eval_step and \
                    (global_step - start_eval_step) % eval_batch_step == 0 and dist.get_rank() == 0:
tink2123's avatar
tink2123 committed
267
268
269
270
271
272
273
                if model_average:
                    Model_Average = paddle.incubate.optimizer.ModelAverage(
                        0.15,
                        parameters=model.parameters(),
                        min_average_window=10000,
                        max_average_window=15625)
                    Model_Average.apply()
tink2123's avatar
tink2123 committed
274
275
276
277
278
                cur_metric = eval(
                    model,
                    valid_dataloader,
                    post_process_class,
                    eval_class,
MissPenguin's avatar
refine  
MissPenguin committed
279
                    model_type,
tink2123's avatar
tink2123 committed
280
                    use_srn=use_srn)
LDOUBLEV's avatar
LDOUBLEV committed
281
282
283
                cur_metric_str = 'cur metric, {}'.format(', '.join(
                    ['{}: {}'.format(k, v) for k, v in cur_metric.items()]))
                logger.info(cur_metric_str)
WenmuZhou's avatar
WenmuZhou committed
284
285
286

                # logger metric
                if vdl_writer is not None:
LDOUBLEV's avatar
LDOUBLEV committed
287
                    for k, v in cur_metric.items():
WenmuZhou's avatar
WenmuZhou committed
288
289
                        if isinstance(v, (float, int)):
                            vdl_writer.add_scalar('EVAL/{}'.format(k),
LDOUBLEV's avatar
LDOUBLEV committed
290
291
                                                  cur_metric[k], global_step)
                if cur_metric[main_indicator] >= best_model_dict[
WenmuZhou's avatar
WenmuZhou committed
292
                        main_indicator]:
LDOUBLEV's avatar
LDOUBLEV committed
293
                    best_model_dict.update(cur_metric)
WenmuZhou's avatar
WenmuZhou committed
294
295
296
297
298
299
300
301
302
                    best_model_dict['best_epoch'] = epoch
                    save_model(
                        model,
                        optimizer,
                        save_model_dir,
                        logger,
                        is_best=True,
                        prefix='best_accuracy',
                        best_model_dict=best_model_dict,
303
304
                        epoch=epoch,
                        global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
305
                best_str = 'best metric, {}'.format(', '.join([
WenmuZhou's avatar
WenmuZhou committed
306
307
308
309
310
311
312
313
314
                    '{}: {}'.format(k, v) for k, v in best_model_dict.items()
                ]))
                logger.info(best_str)
                # logger best metric
                if vdl_writer is not None:
                    vdl_writer.add_scalar('EVAL/best_{}'.format(main_indicator),
                                          best_model_dict[main_indicator],
                                          global_step)
            global_step += 1
tink2123's avatar
tink2123 committed
315
            optimizer.clear_grad()
316
            batch_start = time.time()
WenmuZhou's avatar
WenmuZhou committed
317
318
319
320
321
322
323
324
325
        if dist.get_rank() == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='latest',
                best_model_dict=best_model_dict,
326
327
                epoch=epoch,
                global_step=global_step)
WenmuZhou's avatar
WenmuZhou committed
328
329
330
331
332
333
334
335
336
        if dist.get_rank() == 0 and epoch > 0 and epoch % save_epoch_step == 0:
            save_model(
                model,
                optimizer,
                save_model_dir,
                logger,
                is_best=False,
                prefix='iter_epoch_{}'.format(epoch),
                best_model_dict=best_model_dict,
337
338
                epoch=epoch,
                global_step=global_step)
LDOUBLEV's avatar
LDOUBLEV committed
339
    best_str = 'best metric, {}'.format(', '.join(
WenmuZhou's avatar
WenmuZhou committed
340
341
342
343
        ['{}: {}'.format(k, v) for k, v in best_model_dict.items()]))
    logger.info(best_str)
    if dist.get_rank() == 0 and vdl_writer is not None:
        vdl_writer.close()
LDOUBLEV's avatar
LDOUBLEV committed
344
345
346
    return


MissPenguin's avatar
refine  
MissPenguin committed
347
348
349
350
351
352
def eval(model,
         valid_dataloader,
         post_process_class,
         eval_class,
         model_type,
         use_srn=False):
WenmuZhou's avatar
WenmuZhou committed
353
354
355
356
    model.eval()
    with paddle.no_grad():
        total_frame = 0.0
        total_time = 0.0
WenmuZhou's avatar
fix bug  
WenmuZhou committed
357
        pbar = tqdm(total=len(valid_dataloader), desc='eval model:')
358
359
        max_iter = len(valid_dataloader) - 1 if platform.system(
        ) == "Windows" else len(valid_dataloader)
WenmuZhou's avatar
WenmuZhou committed
360
        for idx, batch in enumerate(valid_dataloader):
361
            if idx >= max_iter:
WenmuZhou's avatar
WenmuZhou committed
362
                break
WenmuZhou's avatar
fix bug  
WenmuZhou committed
363
            images = batch[0]
WenmuZhou's avatar
WenmuZhou committed
364
            start = time.time()
MissPenguin's avatar
refine  
MissPenguin committed
365
366
367
368
            if use_srn or model_type == 'table':
                preds = model(images, data=batch[1:])
            else:
                preds = model(images)
WenmuZhou's avatar
WenmuZhou committed
369
370
371
372
            batch = [item.numpy() for item in batch]
            # Obtain usable results from post-processing methods
            total_time += time.time() - start
            # Evaluate the results of the current batch
MissPenguin's avatar
MissPenguin committed
373
374
375
376
377
            if model_type == 'table':
                eval_class(preds, batch)
            else:
                post_result = post_process_class(preds, batch[1])
                eval_class(post_result, batch)
WenmuZhou's avatar
fix bug  
WenmuZhou committed
378
            pbar.update(1)
WenmuZhou's avatar
WenmuZhou committed
379
            total_frame += len(images)
LDOUBLEV's avatar
LDOUBLEV committed
380
381
        # Get final metric,eg. acc or hmean
        metric = eval_class.get_metric()
dyning's avatar
dyning committed
382

WenmuZhou's avatar
fix bug  
WenmuZhou committed
383
    pbar.close()
WenmuZhou's avatar
WenmuZhou committed
384
    model.train()
LDOUBLEV's avatar
LDOUBLEV committed
385
386
    metric['fps'] = total_frame / total_time
    return metric
licx's avatar
licx committed
387

tink2123's avatar
tink2123 committed
388

389
def preprocess(is_train=False):
licx's avatar
licx committed
390
391
392
393
394
395
396
397
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

WenmuZhou's avatar
WenmuZhou committed
398
399
    alg = config['Architecture']['algorithm']
    assert alg in [
Jethong's avatar
Jethong committed
400
        'EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN',
MissPenguin's avatar
MissPenguin committed
401
        'CLS', 'PGNet', 'Distillation', 'TableAttn'
WenmuZhou's avatar
WenmuZhou committed
402
    ]
licx's avatar
licx committed
403

WenmuZhou's avatar
WenmuZhou committed
404
405
    device = 'gpu:{}'.format(dist.ParallelEnv().dev_id) if use_gpu else 'cpu'
    device = paddle.set_device(device)
dyning's avatar
dyning committed
406

dyning's avatar
dyning committed
407
    config['Global']['distributed'] = dist.get_world_size() != 1
408
409
410
411
412
413
414
415
416
417
418
    if is_train:
        # save_config
        save_model_dir = config['Global']['save_model_dir']
        os.makedirs(save_model_dir, exist_ok=True)
        with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
            yaml.dump(
                dict(config), f, default_flow_style=False, sort_keys=False)
        log_file = '{}/train.log'.format(save_model_dir)
    else:
        log_file = None
    logger = get_logger(name='root', log_file=log_file)
dyning's avatar
dyning committed
419
420
    if config['Global']['use_visualdl']:
        from visualdl import LogWriter
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
421
        save_model_dir = config['Global']['save_model_dir']
dyning's avatar
dyning committed
422
423
424
425
426
427
428
429
430
        vdl_writer_path = '{}/vdl/'.format(save_model_dir)
        os.makedirs(vdl_writer_path, exist_ok=True)
        vdl_writer = LogWriter(logdir=vdl_writer_path)
    else:
        vdl_writer = None
    print_dict(config, logger)
    logger.info('train with paddle {} and device {}'.format(paddle.__version__,
                                                            device))
    return config, device, logger, vdl_writer