"...git@developer.sourcefind.cn:chenpangpang/open-webui.git" did not exist on "ef300248baeef8c354ba575af354ea662210eed2"
main.cpp 10.4 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
34
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
35
36
37
#include <sys/stat.h>

#include <gflags/gflags.h>
MissPenguin's avatar
MissPenguin committed
38
#include <include/autolog.h>
MissPenguin's avatar
MissPenguin committed
39
40
41
42

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
43
44
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
45
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
46
47
48
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
64
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
MissPenguin's avatar
MissPenguin committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");


using namespace std;
using namespace cv;
using namespace PaddleOCR;


static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


MissPenguin's avatar
MissPenguin committed
84
85
int main_det(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
86
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
87
88
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
89
90
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
91
92
                   FLAGS_use_tensorrt, FLAGS_precision);
    
MissPenguin's avatar
MissPenguin committed
93
94
95
96
97
98
99
100
101
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
102
      std::vector<double> det_times;
MissPenguin's avatar
MissPenguin committed
103

MissPenguin's avatar
MissPenguin committed
104
105
106
107
108
      det.Run(srcimg, boxes, &det_times);
  
      time_info[0] += det_times[0];
      time_info[1] += det_times[1];
      time_info[2] += det_times[2];
MissPenguin's avatar
MissPenguin committed
109
110
    }
    
MissPenguin's avatar
MissPenguin committed
111
    if (FLAGS_benchmark) {
MissPenguin's avatar
MissPenguin committed
112
113
114
115
116
117
118
119
120
121
122
        AutoLogger autolog("ocr_det", 
                           FLAGS_use_gpu,
                           FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn,
                           FLAGS_cpu_threads,
                           1, 
                           "dynamic", 
                           FLAGS_precision, 
                           time_info, 
                           cv_all_img_names.size());
        autolog.report();
MissPenguin's avatar
MissPenguin committed
123
    }
MissPenguin's avatar
MissPenguin committed
124
125
126
127
    return 0;
}


MissPenguin's avatar
MissPenguin committed
128
129
int main_rec(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
130
    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
131
132
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
MissPenguin's avatar
MissPenguin committed
133
                       FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
134
135
136
137
138
139
140
141
142
143

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }

MissPenguin's avatar
MissPenguin committed
144
145
      std::vector<double> rec_times;
      rec.Run(srcimg, &rec_times);
MissPenguin's avatar
MissPenguin committed
146
        
MissPenguin's avatar
MissPenguin committed
147
148
149
150
151
      time_info[0] += rec_times[0];
      time_info[1] += rec_times[1];
      time_info[2] += rec_times[2];
    }
    
MissPenguin's avatar
MissPenguin committed
152
153
154
155
    return 0;
}


MissPenguin's avatar
MissPenguin committed
156
int main_system(std::vector<cv::String> cv_all_img_names) {
MissPenguin's avatar
MissPenguin committed
157
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
158
159
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
160
161
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
162
                   FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
163
164
165
166

    Classifier *cls = nullptr;
    if (FLAGS_use_angle_cls) {
      cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
167
168
                           FLAGS_gpu_mem, FLAGS_cpu_threads,
                           FLAGS_enable_mkldnn, FLAGS_cls_thresh,
MissPenguin's avatar
MissPenguin committed
169
                           FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
170
171
172
    }

    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
173
174
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
MissPenguin's avatar
MissPenguin committed
175
                       FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
176
177
178
179
180
181
182
183
184
185
186
187

    auto start = std::chrono::system_clock::now();

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
188
189
190
191
      std::vector<double> det_times;
      std::vector<double> rec_times;
        
      det.Run(srcimg, boxes, &det_times);
MissPenguin's avatar
MissPenguin committed
192
193
194
    
      cv::Mat crop_img;
      for (int j = 0; j < boxes.size(); j++) {
MissPenguin's avatar
MissPenguin committed
195
        crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
MissPenguin's avatar
MissPenguin committed
196
197
198
199

        if (cls != nullptr) {
          crop_img = cls->Run(crop_img);
        }
MissPenguin's avatar
MissPenguin committed
200
        rec.Run(crop_img, &rec_times);
MissPenguin's avatar
MissPenguin committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
      }
        
      auto end = std::chrono::system_clock::now();
      auto duration =
          std::chrono::duration_cast<std::chrono::microseconds>(end - start);
      std::cout << "Cost  "
                << double(duration.count()) *
                       std::chrono::microseconds::period::num /
                       std::chrono::microseconds::period::den
                << "s" << std::endl;
    }
      
    return 0;
}


MissPenguin's avatar
MissPenguin committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
void check_params(char* mode) {
    if (strcmp(mode, "det")==0) {
        if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);      
        }
    }
    if (strcmp(mode, "rec")==0) {
        if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);
        }
    }
    if (strcmp(mode, "system")==0) {
        if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
           (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
            std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--use_angle_cls=true "
                        << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            exit(1);      
        }
    }
    if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
        cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
        exit(1);
    }
}


MissPenguin's avatar
MissPenguin committed
253
int main(int argc, char **argv) {
MissPenguin's avatar
MissPenguin committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
        std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
        return -1;
    }
    std::cout << "mode: " << argv[1] << endl;

    // Parsing command-line
    google::ParseCommandLineFlags(&argc, &argv, true);
    check_params(argv[1]);
        
    if (!PathExists(FLAGS_image_dir)) {
        std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
        exit(1);      
    }
MissPenguin's avatar
MissPenguin committed
268
    
MissPenguin's avatar
MissPenguin committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    std::vector<cv::String> cv_all_img_names;
    cv::glob(FLAGS_image_dir, cv_all_img_names);
    std::cout << "total images num: " << cv_all_img_names.size() << endl;
    
    if (strcmp(argv[1], "det")==0) {
        return main_det(cv_all_img_names);
    }
    if (strcmp(argv[1], "rec")==0) {
        return main_rec(cv_all_img_names);
    }    
    if (strcmp(argv[1], "system")==0) {
        return main_system(cv_all_img_names);
    } 

MissPenguin's avatar
MissPenguin committed
283
}