ocr_rec.cpp 6.77 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
                         cv::Mat &img) {
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
littletomatodonkey's avatar
littletomatodonkey committed
29
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
littletomatodonkey's avatar
littletomatodonkey committed
30
31
32
33
34
35
36
37

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    this->resize_op_.Run(crop_img, resize_img, wh_ratio);

    this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                            this->is_scale_);

littletomatodonkey's avatar
littletomatodonkey committed
38
    std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
littletomatodonkey's avatar
littletomatodonkey committed
39

littletomatodonkey's avatar
littletomatodonkey committed
40
    this->permute_op_.Run(&resize_img, input.data());
littletomatodonkey's avatar
littletomatodonkey committed
41

42
    // Inference.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    if (this->use_zero_copy_run_) {
      auto input_names = this->predictor_->GetInputNames();
      auto input_t = this->predictor_->GetInputTensor(input_names[0]);
      input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
      input_t->copy_from_cpu(input.data());
      this->predictor_->ZeroCopyRun();
    } else {
      paddle::PaddleTensor input_t;
      input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
      input_t.data =
          paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
      input_t.dtype = PaddleDType::FLOAT32;
      std::vector<paddle::PaddleTensor> outputs;
      this->predictor_->Run({input_t}, &outputs, 1);
    }
littletomatodonkey's avatar
littletomatodonkey committed
58
59
60
61
62
63

    std::vector<int64_t> rec_idx;
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
    auto rec_idx_lod = output_t->lod();
    auto shape_out = output_t->shape();
64

littletomatodonkey's avatar
littletomatodonkey committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    int out_num = std::accumulate(shape_out.begin(), shape_out.end(), 1,
                                  std::multiplies<int>());

    rec_idx.resize(out_num);
    output_t->copy_to_cpu(rec_idx.data());

    std::vector<int> pred_idx;
    for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1]); n++) {
      pred_idx.push_back(int(rec_idx[n]));
    }

    if (pred_idx.size() < 1e-3)
      continue;

    index += 1;
    std::cout << index << "\t";
    for (int n = 0; n < pred_idx.size(); n++) {
      std::cout << label_list_[pred_idx[n]];
    }

    std::vector<float> predict_batch;
    auto output_t_1 = this->predictor_->GetOutputTensor(output_names[1]);

    auto predict_lod = output_t_1->lod();
    auto predict_shape = output_t_1->shape();
    int out_num_1 = std::accumulate(predict_shape.begin(), predict_shape.end(),
                                    1, std::multiplies<int>());

    predict_batch.resize(out_num_1);
    output_t_1->copy_to_cpu(predict_batch.data());

    int argmax_idx;
    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
littletomatodonkey's avatar
littletomatodonkey committed
103
104
      argmax_idx =
          int(Utility::argmax(&predict_batch[n * predict_shape[1]],
littletomatodonkey's avatar
littletomatodonkey committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
                              &predict_batch[(n + 1) * predict_shape[1]]));
      max_value =
          float(*std::max_element(&predict_batch[n * predict_shape[1]],
                                  &predict_batch[(n + 1) * predict_shape[1]]));
      if (blank - 1 - argmax_idx > 1e-5) {
        score += max_value;
        count += 1;
      }
    }
    score /= count;
    std::cout << "\tscore: " << score << std::endl;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
119
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
littletomatodonkey's avatar
littletomatodonkey committed
120
121
122
  AnalysisConfig config;
  config.SetModel(model_dir + "/model", model_dir + "/params");

littletomatodonkey's avatar
littletomatodonkey committed
123
124
125
126
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
127
128
129
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
    }
littletomatodonkey's avatar
littletomatodonkey committed
130
131
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
132

littletomatodonkey's avatar
littletomatodonkey committed
133
  // false for zero copy tensor
134
  // true for commom tensor
135
  config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
littletomatodonkey's avatar
littletomatodonkey committed
136
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
137
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
138
139
140
141

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey committed
142
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
143
144
145
146

  this->predictor_ = CreatePaddlePredictor(config);
}

littletomatodonkey's avatar
littletomatodonkey committed
147
148
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
202
} // namespace PaddleOCR