rec_postprocess.py 22.7 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
tink2123's avatar
tink2123 committed
15
import string
WenmuZhou's avatar
WenmuZhou committed
16
17
import paddle
from paddle.nn import functional as F
andyjpaddle's avatar
andyjpaddle committed
18
import re
WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
23
24
25
26
27


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False):
MissPenguin's avatar
MissPenguin committed
28
        support_character_type = [
tink2123's avatar
tink2123 committed
29
            'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
tink2123's avatar
tink2123 committed
30
31
            'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
            'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
tink2123's avatar
tink2123 committed
32
            'ne', 'EN', 'latin', 'arabic', 'cyrillic', 'devanagari'
MissPenguin's avatar
MissPenguin committed
33
        ]
WenmuZhou's avatar
WenmuZhou committed
34
        assert character_type in support_character_type, "Only {} are supported now but get {}".format(
MissPenguin's avatar
MissPenguin committed
35
            support_character_type, character_type)
WenmuZhou's avatar
WenmuZhou committed
36

tink2123's avatar
tink2123 committed
37
38
39
        self.beg_str = "sos"
        self.end_str = "eos"

WenmuZhou's avatar
WenmuZhou committed
40
41
42
        if character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
43
        elif character_type == "EN_symbol":
tink2123's avatar
tink2123 committed
44
45
46
47
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        elif character_type in support_character_type:
WenmuZhou's avatar
WenmuZhou committed
48
            self.character_str = []
tink2123's avatar
tink2123 committed
49
50
            assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
                character_type)
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
55
                    self.character_str.append(line)
WenmuZhou's avatar
WenmuZhou committed
56
            if use_space_char:
WenmuZhou's avatar
WenmuZhou committed
57
                self.character_str.append(" ")
WenmuZhou's avatar
WenmuZhou committed
58
            dict_character = list(self.character_str)
tink2123's avatar
tink2123 committed
59

WenmuZhou's avatar
WenmuZhou committed
60
61
62
63
64
65
66
67
68
69
70
71
        else:
            raise NotImplementedError
        self.character_type = character_type
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

littletomatodonkey's avatar
littletomatodonkey committed
72
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
WenmuZhou's avatar
WenmuZhou committed
73
74
75
76
77
78
79
80
81
82
83
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
84
                    # only for predict
WenmuZhou's avatar
WenmuZhou committed
85
86
87
88
89
90
91
92
93
94
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
zhoujun's avatar
zhoujun committed
95
            result_list.append((text, np.mean(conf_list)))
WenmuZhou's avatar
WenmuZhou committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(CTCLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
WenmuZhou's avatar
WenmuZhou committed
114
115
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
WenmuZhou's avatar
WenmuZhou committed
116
117
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
WenmuZhou's avatar
WenmuZhou committed
118
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
WenmuZhou's avatar
WenmuZhou committed
119
120
        if label is None:
            return text
littletomatodonkey's avatar
littletomatodonkey committed
121
        label = self.decode(label)
WenmuZhou's avatar
WenmuZhou committed
122
123
124
125
126
127
128
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


littletomatodonkey's avatar
littletomatodonkey committed
129
130
131
132
133
134
135
136
137
138
class DistillationCTCLabelDecode(CTCLabelDecode):
    """
    Convert 
    Convert between text-label and text-index
    """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
littletomatodonkey's avatar
littletomatodonkey committed
139
                 model_name=["student"],
140
                 key=None,
littletomatodonkey's avatar
littletomatodonkey committed
141
142
143
                 **kwargs):
        super(DistillationCTCLabelDecode, self).__init__(
            character_dict_path, character_type, use_space_char)
littletomatodonkey's avatar
littletomatodonkey committed
144
145
        if not isinstance(model_name, list):
            model_name = [model_name]
littletomatodonkey's avatar
littletomatodonkey committed
146
        self.model_name = model_name
littletomatodonkey's avatar
littletomatodonkey committed
147

148
        self.key = key
littletomatodonkey's avatar
littletomatodonkey committed
149
150

    def __call__(self, preds, label=None, *args, **kwargs):
littletomatodonkey's avatar
littletomatodonkey committed
151
152
153
154
155
156
157
        output = dict()
        for name in self.model_name:
            pred = preds[name]
            if self.key is not None:
                pred = pred[self.key]
            output[name] = super().__call__(pred, label=label, *args, **kwargs)
        return output
littletomatodonkey's avatar
littletomatodonkey committed
158
159


Topdu's avatar
Topdu committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
class NRTRLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='EN_symbol',
                 use_space_char=True,
                 **kwargs):
        super(NRTRLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)

    def __call__(self, preds, label=None, *args, **kwargs):
        if preds.dtype == paddle.int64:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            if preds[0][0]==2:
                preds_idx = preds[:,1:]
            else:
                preds_idx = preds

            text = self.decode(preds_idx)
            if label is None:
                return text
            label = self.decode(label[:,1:])
        else:
            if isinstance(preds, paddle.Tensor):
                preds = preds.numpy()
            preds_idx = preds.argmax(axis=2)
            preds_prob = preds.max(axis=2)
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
            if label is None:
                return text
            label = self.decode(label[:,1:])
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank','<unk>','<s>','</s>'] + dict_character
        return dict_character
    
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] == 3: # end
                    break
                try:
                    char_list.append(self.character[int(text_index[batch_idx][idx])])
                except:
                    continue
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text.lower(), np.mean(conf_list)))
        return result_list



WenmuZhou's avatar
WenmuZhou committed
223
224
225
226
227
228
229
230
231
232
233
234
class AttnLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(AttnLabelDecode, self).__init__(character_dict_path,
                                              character_type, use_space_char)

    def add_special_char(self, dict_character):
LDOUBLEV's avatar
LDOUBLEV committed
235
236
237
238
        self.beg_str = "sos"
        self.end_str = "eos"
        dict_character = dict_character
        dict_character = [self.beg_str] + dict_character + [self.end_str]
WenmuZhou's avatar
WenmuZhou committed
239
240
        return dict_character

LDOUBLEV's avatar
LDOUBLEV committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        [beg_idx, end_idx] = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(end_idx):
                    break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
Topdu's avatar
Topdu committed
260
                char_list.append(self.character[int(text_index[batch_idx][idx])])
LDOUBLEV's avatar
LDOUBLEV committed
261
262
263
264
265
266
267
268
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

LDOUBLEV's avatar
LDOUBLEV committed
269
270
    def __call__(self, preds, label=None, *args, **kwargs):
        """
WenmuZhou's avatar
WenmuZhou committed
271
        text = self.decode(text)
LDOUBLEV's avatar
LDOUBLEV committed
272
273
274
275
276
277
278
279
280
281
282
        if label is None:
            return text
        else:
            label = self.decode(label, is_remove_duplicate=False)
            return text, label
        """
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()

        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
LDOUBLEV's avatar
LDOUBLEV committed
283
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
284
285
        if label is None:
            return text
LDOUBLEV's avatar
LDOUBLEV committed
286
        label = self.decode(label, is_remove_duplicate=False)
LDOUBLEV's avatar
LDOUBLEV committed
287
288
        return text, label

WenmuZhou's avatar
WenmuZhou committed
289
290
291
292
293
294
295
296
297
298
299
300
301
    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
MissPenguin's avatar
MissPenguin committed
302
        return idx
tink2123's avatar
tink2123 committed
303
304
305
306
307
308
309
310
311
312
313
314


class SRNLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='en',
                 use_space_char=False,
                 **kwargs):
        super(SRNLabelDecode, self).__init__(character_dict_path,
                                             character_type, use_space_char)
315
        self.max_text_length = kwargs.get('max_text_length', 25)
tink2123's avatar
tink2123 committed
316
317
318
319
320
321
322
323
324
325
326

    def __call__(self, preds, label=None, *args, **kwargs):
        pred = preds['predict']
        char_num = len(self.character_str) + 2
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = np.reshape(pred, [-1, char_num])

        preds_idx = np.argmax(pred, axis=1)
        preds_prob = np.max(pred, axis=1)

327
        preds_idx = np.reshape(preds_idx, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
328

329
        preds_prob = np.reshape(preds_prob, [-1, self.max_text_length])
tink2123's avatar
tink2123 committed
330

tink2123's avatar
tink2123 committed
331
        text = self.decode(preds_idx, preds_prob)
tink2123's avatar
tink2123 committed
332
333

        if label is None:
LDOUBLEV's avatar
LDOUBLEV committed
334
            text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)
tink2123's avatar
tink2123 committed
335
            return text
tink2123's avatar
tink2123 committed
336
        label = self.decode(label)
tink2123's avatar
tink2123 committed
337
338
        return text, label

LDOUBLEV's avatar
LDOUBLEV committed
339
    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
tink2123's avatar
tink2123 committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)

        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)

            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def add_special_char(self, dict_character):
        dict_character = dict_character + [self.beg_str, self.end_str]
        return dict_character

    def get_ignored_tokens(self):
        beg_idx = self.get_beg_end_flag_idx("beg")
        end_idx = self.get_beg_end_flag_idx("end")
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end):
        if beg_or_end == "beg":
            idx = np.array(self.dict[self.beg_str])
        elif beg_or_end == "end":
            idx = np.array(self.dict[self.end_str])
        else:
            assert False, "unsupport type %s in get_beg_end_flag_idx" \
                          % beg_or_end
        return idx
WenmuZhou's avatar
WenmuZhou committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411


class TableLabelDecode(object):
    """  """

    def __init__(self,
                 character_dict_path,
                 **kwargs):
        list_character, list_elem = self.load_char_elem_dict(character_dict_path)
        list_character = self.add_special_char(list_character)
        list_elem = self.add_special_char(list_elem)
        self.dict_character = {}
        self.dict_idx_character = {}
        for i, char in enumerate(list_character):
            self.dict_idx_character[i] = char
            self.dict_character[char] = i
        self.dict_elem = {}
        self.dict_idx_elem = {}
        for i, elem in enumerate(list_elem):
            self.dict_idx_elem[i] = elem
            self.dict_elem[elem] = i

    def load_char_elem_dict(self, character_dict_path):
        list_character = []
        list_elem = []
        with open(character_dict_path, "rb") as fin:
            lines = fin.readlines()
WenmuZhou's avatar
WenmuZhou committed
412
            substr = lines[0].decode('utf-8').strip("\n").strip("\r\n").split("\t")
WenmuZhou's avatar
WenmuZhou committed
413
414
415
            character_num = int(substr[0])
            elem_num = int(substr[1])
            for cno in range(1, 1 + character_num):
WenmuZhou's avatar
WenmuZhou committed
416
                character = lines[cno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
417
418
                list_character.append(character)
            for eno in range(1 + character_num, 1 + character_num + elem_num):
WenmuZhou's avatar
WenmuZhou committed
419
                elem = lines[eno].decode('utf-8').strip("\n").strip("\r\n")
WenmuZhou's avatar
WenmuZhou committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
                list_elem.append(elem)
        return list_character, list_elem

    def add_special_char(self, list_character):
        self.beg_str = "sos"
        self.end_str = "eos"
        list_character = [self.beg_str] + list_character + [self.end_str]
        return list_character

    def __call__(self, preds):
        structure_probs = preds['structure_probs']
        loc_preds = preds['loc_preds']
        if isinstance(structure_probs,paddle.Tensor):
            structure_probs = structure_probs.numpy()
        if isinstance(loc_preds,paddle.Tensor):
            loc_preds = loc_preds.numpy()
        structure_idx = structure_probs.argmax(axis=2)
        structure_probs = structure_probs.max(axis=2)
        structure_str, structure_pos, result_score_list, result_elem_idx_list = self.decode(structure_idx,
                                                                                            structure_probs, 'elem')
        res_html_code_list = []
        res_loc_list = []
        batch_num = len(structure_str)
        for bno in range(batch_num):
            res_loc = []
            for sno in range(len(structure_str[bno])):
                text = structure_str[bno][sno]
                if text in ['<td>', '<td']:
                    pos = structure_pos[bno][sno]
                    res_loc.append(loc_preds[bno, pos])
            res_html_code = ''.join(structure_str[bno])
            res_loc = np.array(res_loc)
            res_html_code_list.append(res_html_code)
            res_loc_list.append(res_loc)
        return {'res_html_code': res_html_code_list, 'res_loc': res_loc_list, 'res_score_list': result_score_list,
                'res_elem_idx_list': result_elem_idx_list,'structure_str_list':structure_str}

    def decode(self, text_index, structure_probs, char_or_elem):
        """convert text-label into text-index.
        """
        if char_or_elem == "char":
            current_dict = self.dict_idx_character
        else:
            current_dict = self.dict_idx_elem
            ignored_tokens = self.get_ignored_tokens('elem')
            beg_idx, end_idx = ignored_tokens

        result_list = []
        result_pos_list = []
        result_score_list = []
        result_elem_idx_list = []
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            elem_pos_list = []
            elem_idx_list = []
            score_list = []
            for idx in range(len(text_index[batch_idx])):
                tmp_elem_idx = int(text_index[batch_idx][idx])
                if idx > 0 and tmp_elem_idx == end_idx:
                    break
                if tmp_elem_idx in ignored_tokens:
                    continue

                char_list.append(current_dict[tmp_elem_idx])
                elem_pos_list.append(idx)
                score_list.append(structure_probs[batch_idx, idx])
                elem_idx_list.append(tmp_elem_idx)
            result_list.append(char_list)
            result_pos_list.append(elem_pos_list)
            result_score_list.append(score_list)
            result_elem_idx_list.append(elem_idx_list)
        return result_list, result_pos_list, result_score_list, result_elem_idx_list

    def get_ignored_tokens(self, char_or_elem):
        beg_idx = self.get_beg_end_flag_idx("beg", char_or_elem)
        end_idx = self.get_beg_end_flag_idx("end", char_or_elem)
        return [beg_idx, end_idx]

    def get_beg_end_flag_idx(self, beg_or_end, char_or_elem):
        if char_or_elem == "char":
            if beg_or_end == "beg":
                idx = self.dict_character[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_character[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of char" \
                              % beg_or_end
        elif char_or_elem == "elem":
            if beg_or_end == "beg":
                idx = self.dict_elem[self.beg_str]
            elif beg_or_end == "end":
                idx = self.dict_elem[self.end_str]
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx of elem" \
                              % beg_or_end
        else:
            assert False, "Unsupport type %s in char_or_elem" \
                          % char_or_elem
        return idx
andyjpaddle's avatar
andyjpaddle committed
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595


class SARLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(self,
                 character_dict_path=None,
                 character_type='ch',
                 use_space_char=False,
                 **kwargs):
        super(SARLabelDecode, self).__init__(character_dict_path,
                                              character_type, use_space_char)

    def add_special_char(self, dict_character):
        beg_end_str = "<BOS/EOS>"
        unknown_str = "<UKN>"
        padding_str = "<PAD>"
        dict_character = dict_character + [unknown_str]
        self.unknown_idx = len(dict_character) - 1
        dict_character = dict_character + [beg_end_str]
        self.start_idx = len(dict_character) - 1
        self.end_idx = len(dict_character) - 1
        dict_character = dict_character + [padding_str]
        self.padding_idx = len(dict_character) - 1
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if int(text_index[batch_idx][idx]) == int(self.end_idx):
                    if text_prob is None and idx ==0:
                        continue
                    else:
                        break
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            comp = re.compile('[^A-Z^a-z^0-9^\u4e00-\u9fa5]')
            text = text.lower()
            text = comp.sub('', text)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def __call__(self, preds, label=None, *args, **kwargs):
        if isinstance(preds, paddle.Tensor):
            preds = preds.numpy()
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=False)

        if label is None:
            return text
        label = self.decode(label, is_remove_duplicate=False)
        return text, label

    def get_ignored_tokens(self):
        return [self.padding_idx]