README.md 9.74 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
# OCR Pipeline WebService

(English|[简体中文](./README_CN.md))

LDOUBLEV's avatar
LDOUBLEV committed
5
PaddleOCR provides two service deployment methods:
LDOUBLEV's avatar
LDOUBLEV committed
6
7
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please refer to the [tutorial](../../deploy/hubserving/readme_en.md)
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please follow this tutorial.
LDOUBLEV's avatar
LDOUBLEV committed
8

LDOUBLEV's avatar
LDOUBLEV committed
9
10
11
12
13
14
15
16
17
18
# Service deployment based on PaddleServing  

This document will introduce how to use the [PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README.md) to deploy the PPOCR dynamic graph model as a pipeline online service.

Some Key Features of Paddle Serving:
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed with one line command.
- Industrial serving features supported, such as models management, online loading, online A/B testing etc.
- Highly concurrent and efficient communication between clients and servers supported.

The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://github.com/PaddlePaddle/Serving/blob/develop/README.md).
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21


## Contents
LDOUBLEV's avatar
LDOUBLEV committed
22
23
24
25
- [Environmental preparation](#environmental-preparation)
- [Model conversion](#model-conversion)
- [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
- [FAQ](#faq)
LDOUBLEV's avatar
LDOUBLEV committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27
<a name="environmental-preparation"></a>
LDOUBLEV's avatar
LDOUBLEV committed
28
29
## Environmental preparation

LDOUBLEV's avatar
LDOUBLEV committed
30
PaddleOCR operating environment and Paddle Serving operating environment are needed.
LDOUBLEV's avatar
LDOUBLEV committed
31

LDOUBLEV's avatar
LDOUBLEV committed
32
1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md).
tink2123's avatar
tink2123 committed
33
34
   Download the corresponding paddle whl package according to the environment, it is recommended to install version 2.0.1.

LDOUBLEV's avatar
LDOUBLEV committed
35

LDOUBLEV's avatar
LDOUBLEV committed
36
2. The steps of PaddleServing operating environment prepare are as follows:
LDOUBLEV's avatar
LDOUBLEV committed
37

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42
43
44
45
46
47
48
49
    Install serving which used to start the service
    ```
    pip3 install paddle-serving-server==0.5.0 # for CPU
    pip3 install paddle-serving-server-gpu==0.5.0 # for GPU
    # Other GPU environments need to confirm the environment and then choose to execute the following commands
    pip3 install paddle-serving-server-gpu==0.5.0.post9 # GPU with CUDA9.0
    pip3 install paddle-serving-server-gpu==0.5.0.post10 # GPU with CUDA10.0
    pip3 install paddle-serving-server-gpu==0.5.0.post101 # GPU with CUDA10.1 + TensorRT6
    pip3 install paddle-serving-server-gpu==0.5.0.post11 # GPU with CUDA10.1 + TensorRT7
    ```

3. Install the client to send requests to the service
tink2123's avatar
tink2123 committed
50
51
    In [download link](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md) find the client installation package corresponding to the python version.
    The python3.7 version is recommended here:
LDOUBLEV's avatar
LDOUBLEV committed
52

tink2123's avatar
tink2123 committed
53
54
55
    ```
    wget https://paddle-serving.bj.bcebos.com/whl/paddle_serving_client-0.0.0-cp37-none-any.whl
    pip3 install paddle_serving_client-0.0.0-cp37-none-any.whl
LDOUBLEV's avatar
LDOUBLEV committed
56
57
58
59
    ```

4. Install serving-app
    ```
tink2123's avatar
tink2123 committed
60
    pip3 install paddle-serving-app==0.3.1
LDOUBLEV's avatar
LDOUBLEV committed
61
62
63
64
65
66
    ```

   **note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md).


<a name="model-conversion"></a>
LDOUBLEV's avatar
LDOUBLEV committed
67
68
69
## Model conversion
When using PaddleServing for service deployment, you need to convert the saved inference model into a serving model that is easy to deploy.

LDOUBLEV's avatar
LDOUBLEV committed
70
Firstly, download the [inference model](https://github.com/PaddlePaddle/PaddleOCR#pp-ocr-20-series-model-listupdate-on-dec-15) of PPOCR
LDOUBLEV's avatar
LDOUBLEV committed
71
72
```
# Download and unzip the OCR text detection model
tink2123's avatar
add qps  
tink2123 committed
73
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
LDOUBLEV's avatar
LDOUBLEV committed
74
# Download and unzip the OCR text recognition model
tink2123's avatar
add qps  
tink2123 committed
75
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
LDOUBLEV's avatar
LDOUBLEV committed
76

LDOUBLEV's avatar
LDOUBLEV committed
77
```
tink2123's avatar
add qps  
tink2123 committed
78
Then, you can use installed paddle_serving_client tool to convert inference model to mobile model.
LDOUBLEV's avatar
LDOUBLEV committed
79
```
LDOUBLEV's avatar
LDOUBLEV committed
80
#  Detection model conversion
tink2123's avatar
add qps  
tink2123 committed
81
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_det_infer/ \
LDOUBLEV's avatar
LDOUBLEV committed
82
83
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
tink2123's avatar
add qps  
tink2123 committed
84
85
                                         --serving_server ./ppocr_det_mobile_2.0_serving/ \
                                         --serving_client ./ppocr_det_mobile_2.0_client/
LDOUBLEV's avatar
LDOUBLEV committed
86

LDOUBLEV's avatar
LDOUBLEV committed
87
#  Recognition model conversion
tink2123's avatar
add qps  
tink2123 committed
88
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_mobile_v2.0_rec_infer/ \
LDOUBLEV's avatar
LDOUBLEV committed
89
90
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
tink2123's avatar
add qps  
tink2123 committed
91
92
                                         --serving_server ./ppocr_rec_mobile_2.0_serving/  \
                                         --serving_client ./ppocr_rec_mobile_2.0_client/
LDOUBLEV's avatar
LDOUBLEV committed
93
94
95

```

tink2123's avatar
add qps  
tink2123 committed
96
After the detection model is converted, there will be additional folders of `ppocr_det_mobile_2.0_serving` and `ppocr_det_mobile_2.0_client` in the current folder, with the following format:
LDOUBLEV's avatar
LDOUBLEV committed
97
```
tink2123's avatar
add qps  
tink2123 committed
98
|- ppocr_det_mobile_2.0_serving/
LDOUBLEV's avatar
LDOUBLEV committed
99
100
101
102
103
   |- __model__
   |- __params__
   |- serving_server_conf.prototxt
   |- serving_server_conf.stream.prototxt

tink2123's avatar
add qps  
tink2123 committed
104
|- ppocr_det_mobile_2.0_client
LDOUBLEV's avatar
LDOUBLEV committed
105
106
107
108
109
110
   |- serving_client_conf.prototxt
   |- serving_client_conf.stream.prototxt

```
The recognition model is the same.

LDOUBLEV's avatar
LDOUBLEV committed
111
<a name="paddle-serving-pipeline-deployment"></a>
LDOUBLEV's avatar
LDOUBLEV committed
112
113
114
## Paddle Serving pipeline deployment

1. Download the PaddleOCR code, if you have already downloaded it, you can skip this step.
LDOUBLEV's avatar
LDOUBLEV committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    ```
    git clone https://github.com/PaddlePaddle/PaddleOCR

    # Enter the working directory  
    cd PaddleOCR/deploy/pdserver/
    ```

    The pdserver directory contains the code to start the pipeline service and send prediction requests, including:
    ```
    __init__.py
    config.yml # Start the service configuration file
    ocr_reader.py # OCR model pre-processing and post-processing code implementation
    pipeline_http_client.py # Script to send pipeline prediction request
    web_service.py # Start the script of the pipeline server
    ```
LDOUBLEV's avatar
LDOUBLEV committed
130
131

2. Run the following command to start the service.
LDOUBLEV's avatar
LDOUBLEV committed
132
133
134
135
136
137
    ```
    # Start the service and save the running log in log.txt
    python3 web_service.py &>log.txt &
    ```
    After the service is successfully started, a log similar to the following will be printed in log.txt
    ![](./imgs/start_server.png)
LDOUBLEV's avatar
LDOUBLEV committed
138
139

3. Send service request
LDOUBLEV's avatar
LDOUBLEV committed
140
141
142
143
144
    ```
    python3 pipeline_http_client.py
    ```
    After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
    ![](./imgs/results.png)  
LDOUBLEV's avatar
LDOUBLEV committed
145

tink2123's avatar
add qps  
tink2123 committed
146
147
148
149
150
151
152
153
154
155
156
157
158
    Adjust the number of concurrency in config.yml to get the largest QPS. Generally, the number of concurrent detection and recognition is 2:1

    ```
    det:
        concurrency: 8
        ...
    rec:
        concurrency: 4
        ...
    ```

    Multiple service requests can be sent at the same time if necessary.

tink2123's avatar
add qps  
tink2123 committed
159
160
    The predicted performance data will be automatically written into the `PipelineServingLogs/pipeline.tracer` file.

tink2123's avatar
add qps  
tink2123 committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    Tested on 200 real pictures, and limited the detection long side to 960. The average QPS on T4 GPU can reach around 23:

    ```

    2021-05-13 03:42:36,895 ==================== TRACER ======================
    2021-05-13 03:42:36,975 Op(rec):
    2021-05-13 03:42:36,976         in[14.472382882882883 ms]
    2021-05-13 03:42:36,976         prep[9.556855855855856 ms]
    2021-05-13 03:42:36,976         midp[59.921905405405404 ms]
    2021-05-13 03:42:36,976         postp[15.345945945945946 ms]
    2021-05-13 03:42:36,976         out[1.9921216216216215 ms]
    2021-05-13 03:42:36,976         idle[0.16254943864471572]
    2021-05-13 03:42:36,976 Op(det):
    2021-05-13 03:42:36,976         in[315.4468035714286 ms]
    2021-05-13 03:42:36,976         prep[69.5980625 ms]
    2021-05-13 03:42:36,976         midp[18.989535714285715 ms]
    2021-05-13 03:42:36,976         postp[18.857803571428573 ms]
    2021-05-13 03:42:36,977         out[3.1337544642857145 ms]
    2021-05-13 03:42:36,977         idle[0.7477961159203756]
    2021-05-13 03:42:36,977 DAGExecutor:
    2021-05-13 03:42:36,977         Query count[224]
    2021-05-13 03:42:36,977         QPS[22.4 q/s]
    2021-05-13 03:42:36,977         Succ[0.9910714285714286]
    2021-05-13 03:42:36,977         Error req[169, 170]
    2021-05-13 03:42:36,977         Latency:
    2021-05-13 03:42:36,977                 ave[535.1678348214285 ms]
    2021-05-13 03:42:36,977                 .50[172.651 ms]
    2021-05-13 03:42:36,977                 .60[187.904 ms]
    2021-05-13 03:42:36,977                 .70[245.675 ms]
    2021-05-13 03:42:36,977                 .80[526.684 ms]
    2021-05-13 03:42:36,977                 .90[854.596 ms]
    2021-05-13 03:42:36,977                 .95[1722.728 ms]
    2021-05-13 03:42:36,977                 .99[3990.292 ms]
    2021-05-13 03:42:36,978 Channel (server worker num[10]):
    2021-05-13 03:42:36,978         chl0(In: ['@DAGExecutor'], Out: ['det']) size[0/0]
    2021-05-13 03:42:36,979         chl1(In: ['det'], Out: ['rec']) size[6/0]
    2021-05-13 03:42:36,979         chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
tink2123's avatar
add qps  
tink2123 committed
198
199
    ```

bjjwwang's avatar
win doc  
bjjwwang committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
## WINDOWS Users

Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/WINDOWS_TUTORIAL.md)


1. Start Server

```
cd win
python3 ocr_web_server.py
```

2. Client Send Requests

```
python3 ocr_web_client.py
```
tink2123's avatar
add qps  
tink2123 committed
217

LDOUBLEV's avatar
LDOUBLEV committed
218
<a name="faq"></a>
LDOUBLEV's avatar
LDOUBLEV committed
219
## FAQ
MissPenguin's avatar
MissPenguin committed
220
**Q1**: No result return after sending the request.
LDOUBLEV's avatar
LDOUBLEV committed
221

MissPenguin's avatar
MissPenguin committed
222
**A1**: Do not set the proxy when starting the service and sending the request. You can close the proxy before starting the service and before sending the request. The command to close the proxy is:
LDOUBLEV's avatar
LDOUBLEV committed
223
224
225
226
```
unset https_proxy
unset http_proxy
```