"tests/models/unets/test_unet_2d_blocks.py" did not exist on "88735249da94266a433368d2b899e87dc33446c9"
README.md 6.92 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
# OCR Pipeline WebService

(English|[简体中文](./README_CN.md))

LDOUBLEV's avatar
LDOUBLEV committed
5
PaddleOCR provides two service deployment methods:
LDOUBLEV's avatar
LDOUBLEV committed
6
7
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please refer to the [tutorial](../../deploy/hubserving/readme_en.md)
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please follow this tutorial.
LDOUBLEV's avatar
LDOUBLEV committed
8

LDOUBLEV's avatar
LDOUBLEV committed
9
10
11
12
13
14
15
16
17
18
# Service deployment based on PaddleServing  

This document will introduce how to use the [PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README.md) to deploy the PPOCR dynamic graph model as a pipeline online service.

Some Key Features of Paddle Serving:
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed with one line command.
- Industrial serving features supported, such as models management, online loading, online A/B testing etc.
- Highly concurrent and efficient communication between clients and servers supported.

The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://github.com/PaddlePaddle/Serving/blob/develop/README.md).
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21


## Contents
LDOUBLEV's avatar
LDOUBLEV committed
22
23
24
25
- [Environmental preparation](#environmental-preparation)
- [Model conversion](#model-conversion)
- [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
- [FAQ](#faq)
LDOUBLEV's avatar
LDOUBLEV committed
26

LDOUBLEV's avatar
LDOUBLEV committed
27
<a name="environmental-preparation"></a>
LDOUBLEV's avatar
LDOUBLEV committed
28
29
## Environmental preparation

LDOUBLEV's avatar
LDOUBLEV committed
30
PaddleOCR operating environment and Paddle Serving operating environment are needed.
LDOUBLEV's avatar
LDOUBLEV committed
31

LDOUBLEV's avatar
LDOUBLEV committed
32
1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md).
LDOUBLEV's avatar
LDOUBLEV committed
33

LDOUBLEV's avatar
LDOUBLEV committed
34
2. The steps of PaddleServing operating environment prepare are as follows:
LDOUBLEV's avatar
LDOUBLEV committed
35

LDOUBLEV's avatar
LDOUBLEV committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    Install serving which used to start the service
    ```
    pip3 install paddle-serving-server==0.5.0 # for CPU
    pip3 install paddle-serving-server-gpu==0.5.0 # for GPU
    # Other GPU environments need to confirm the environment and then choose to execute the following commands
    pip3 install paddle-serving-server-gpu==0.5.0.post9 # GPU with CUDA9.0
    pip3 install paddle-serving-server-gpu==0.5.0.post10 # GPU with CUDA10.0
    pip3 install paddle-serving-server-gpu==0.5.0.post101 # GPU with CUDA10.1 + TensorRT6
    pip3 install paddle-serving-server-gpu==0.5.0.post11 # GPU with CUDA10.1 + TensorRT7
    ```

3. Install the client to send requests to the service
    ```
    pip3 install paddle-serving-client==0.5.0 # for CPU

    pip3 install paddle-serving-client-gpu==0.5.0 # for GPU
    ```

4. Install serving-app
    ```
    pip3 install paddle-serving-app==0.3.0
    # fix local_predict to support load dynamic model
    # find the install directoory of paddle_serving_app
    vim /usr/local/lib/python3.7/site-packages/paddle_serving_app/local_predict.py
    # replace line 85 of local_predict.py config = AnalysisConfig(model_path) with:
    if os.path.exists(os.path.join(model_path, "__params__")):
        config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "__params__"))
    else:
        config = AnalysisConfig(model_path)
    ```

   **note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md).


<a name="model-conversion"></a>
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
## Model conversion
When using PaddleServing for service deployment, you need to convert the saved inference model into a serving model that is easy to deploy.

LDOUBLEV's avatar
LDOUBLEV committed
74
Firstly, download the [inference model](https://github.com/PaddlePaddle/PaddleOCR#pp-ocr-20-series-model-listupdate-on-dec-15) of PPOCR
LDOUBLEV's avatar
LDOUBLEV committed
75
76
77
78
79
80
```
# Download and unzip the OCR text detection model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar && tar xf ch_ppocr_server_v2.0_det_infer.tar
# Download and unzip the OCR text recognition model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar && tar xf ch_ppocr_server_v2.0_rec_infer.tar

LDOUBLEV's avatar
LDOUBLEV committed
81
82
83
```
Then, you can use installed paddle_serving_client tool to convert inference model to server model.
```
LDOUBLEV's avatar
LDOUBLEV committed
84
#  Detection model conversion
LDOUBLEV's avatar
LDOUBLEV committed
85
86
87
88
89
90
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_server_v2.0_det_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_det_server_2.0_serving/ \
                                         --serving_client ./ppocr_det_server_2.0_client/

LDOUBLEV's avatar
LDOUBLEV committed
91
#  Recognition model conversion
LDOUBLEV's avatar
LDOUBLEV committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
python3 -m paddle_serving_client.convert --dirname ./ch_ppocr_server_v2.0_rec_infer/ \
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
                                         --serving_server ./ppocr_rec_server_2.0_serving/  \
                                         --serving_client ./ppocr_rec_server_2.0_client/

```

After the detection model is converted, there will be additional folders of `ppocr_det_server_2.0_serving` and `ppocr_det_server_2.0_client` in the current folder, with the following format:
```
|- ppocr_det_server_2.0_serving/
   |- __model__
   |- __params__
   |- serving_server_conf.prototxt
   |- serving_server_conf.stream.prototxt

|- ppocr_det_server_2.0_client
   |- serving_client_conf.prototxt
   |- serving_client_conf.stream.prototxt

```
The recognition model is the same.

LDOUBLEV's avatar
LDOUBLEV committed
115
<a name="paddle-serving-pipeline-deployment"></a>
LDOUBLEV's avatar
LDOUBLEV committed
116
117
118
## Paddle Serving pipeline deployment

1. Download the PaddleOCR code, if you have already downloaded it, you can skip this step.
LDOUBLEV's avatar
LDOUBLEV committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    ```
    git clone https://github.com/PaddlePaddle/PaddleOCR

    # Enter the working directory  
    cd PaddleOCR/deploy/pdserver/
    ```

    The pdserver directory contains the code to start the pipeline service and send prediction requests, including:
    ```
    __init__.py
    config.yml # Start the service configuration file
    ocr_reader.py # OCR model pre-processing and post-processing code implementation
    pipeline_http_client.py # Script to send pipeline prediction request
    web_service.py # Start the script of the pipeline server
    ```
LDOUBLEV's avatar
LDOUBLEV committed
134
135

2. Run the following command to start the service.
LDOUBLEV's avatar
LDOUBLEV committed
136
137
138
139
140
141
    ```
    # Start the service and save the running log in log.txt
    python3 web_service.py &>log.txt &
    ```
    After the service is successfully started, a log similar to the following will be printed in log.txt
    ![](./imgs/start_server.png)
LDOUBLEV's avatar
LDOUBLEV committed
142
143

3. Send service request
LDOUBLEV's avatar
LDOUBLEV committed
144
145
146
147
148
    ```
    python3 pipeline_http_client.py
    ```
    After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
    ![](./imgs/results.png)  
LDOUBLEV's avatar
LDOUBLEV committed
149

LDOUBLEV's avatar
LDOUBLEV committed
150
<a name="faq"></a>
LDOUBLEV's avatar
LDOUBLEV committed
151
## FAQ
MissPenguin's avatar
MissPenguin committed
152
**Q1**: No result return after sending the request.
LDOUBLEV's avatar
LDOUBLEV committed
153

MissPenguin's avatar
MissPenguin committed
154
**A1**: Do not set the proxy when starting the service and sending the request. You can close the proxy before starting the service and before sending the request. The command to close the proxy is:
LDOUBLEV's avatar
LDOUBLEV committed
155
156
157
158
```
unset https_proxy
unset http_proxy
```