predict_det.py 7.94 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19

20
21
22
23
24
25
26
27
28
import cv2
import copy
import numpy as np
import math
import time
import sys

import paddle.fluid as fluid

LDOUBLEV's avatar
LDOUBLEV committed
29
import tools.infer.utility as utility
LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.utility import initial_logger
logger = initial_logger()
LDOUBLEV's avatar
LDOUBLEV committed
32
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
licx's avatar
licx committed
33
from ppocr.data.det.sast_process import SASTProcessTest
LDOUBLEV's avatar
LDOUBLEV committed
34
35
36
37
from ppocr.data.det.east_process import EASTProcessTest
from ppocr.data.det.db_process import DBProcessTest
from ppocr.postprocess.db_postprocess import DBPostProcess
from ppocr.postprocess.east_postprocess import EASTPostPocess
licx's avatar
licx committed
38
from ppocr.postprocess.sast_postprocess import SASTPostProcess
LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44


class TextDetector(object):
    def __init__(self, args):
        max_side_len = args.det_max_side_len
        self.det_algorithm = args.det_algorithm
littletomatodonkey's avatar
littletomatodonkey committed
45
        self.use_zero_copy_run = args.use_zero_copy_run
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
51
52
        preprocess_params = {'max_side_len': max_side_len}
        postprocess_params = {}
        if self.det_algorithm == "DB":
            self.preprocess_op = DBProcessTest(preprocess_params)
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
53
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
54
55
56
57
58
59
60
            self.postprocess_op = DBPostProcess(postprocess_params)
        elif self.det_algorithm == "EAST":
            self.preprocess_op = EASTProcessTest(preprocess_params)
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
            self.postprocess_op = EASTPostPocess(postprocess_params)
licx's avatar
licx committed
61
62
63
64
        elif self.det_algorithm == "SAST":
            self.preprocess_op = SASTProcessTest(preprocess_params)
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
65
66
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
67
68
69
70
71
72
73
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
licx's avatar
licx committed
74
            self.postprocess_op = SASTPostProcess(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
75
76
77
78
79
80
81
82
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="det")

    def order_points_clockwise(self, pts):
83
84
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
85
        # sort the points based on their x-coordinates
86
        """
LDOUBLEV's avatar
LDOUBLEV committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

dyning's avatar
dyning committed
106
    def clip_det_res(self, points, img_height, img_width):
107
        for pno in range(points.shape[0]):
dyning's avatar
dyning committed
108
109
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
LDOUBLEV's avatar
LDOUBLEV committed
110
111
112
113
114
115
116
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
dyning's avatar
dyning committed
117
            box = self.clip_det_res(box, img_height, img_width)
LDOUBLEV's avatar
LDOUBLEV committed
118
119
120
121
122
123
124
125
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 10 or rect_height <= 10:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

126
127
128
129
130
131
132
133
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
134

LDOUBLEV's avatar
LDOUBLEV committed
135
136
137
138
139
140
141
    def __call__(self, img):
        ori_im = img.copy()
        im, ratio_list = self.preprocess_op(img)
        if im is None:
            return None, 0
        im = im.copy()
        starttime = time.time()
littletomatodonkey's avatar
littletomatodonkey committed
142
143
144
145
146
147
        if self.use_zero_copy_run:
            self.input_tensor.copy_from_cpu(im)
            self.predictor.zero_copy_run()
        else:
            im = fluid.core.PaddleTensor(im)
            self.predictor.run([im])
LDOUBLEV's avatar
LDOUBLEV committed
148
149
150
151
152
153
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        outs_dict = {}
        if self.det_algorithm == "EAST":
LDOUBLEV's avatar
LDOUBLEV committed
154
155
            outs_dict['f_geo'] = outputs[0]
            outs_dict['f_score'] = outputs[1]
licx's avatar
licx committed
156
157
158
159
160
        elif self.det_algorithm == 'SAST':
            outs_dict['f_border'] = outputs[0]
            outs_dict['f_score'] = outputs[1]
            outs_dict['f_tco'] = outputs[2]
            outs_dict['f_tvo'] = outputs[3]
LDOUBLEV's avatar
LDOUBLEV committed
161
        else:
162
            outs_dict['maps'] = outputs[0]
163

LDOUBLEV's avatar
LDOUBLEV committed
164
165
        dt_boxes_list = self.postprocess_op(outs_dict, [ratio_list])
        dt_boxes = dt_boxes_list[0]
166
167
168
169
        if self.det_algorithm == "SAST" and self.det_sast_polygon:
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
LDOUBLEV's avatar
LDOUBLEV committed
170
171
172
173
174
175
        elapse = time.time() - starttime
        return dt_boxes, elapse


if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
176
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
177
178
179
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey committed
180
181
182
    draw_img_save = "./inference_results"
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
183
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
184
185
186
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
187
188
189
190
191
192
193
194
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        dt_boxes, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
        print("Predict time of %s:" % image_file, elapse)
dyning's avatar
dyning committed
195
196
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
        img_name_pure = image_file.split("/")[-1]
littletomatodonkey's avatar
littletomatodonkey committed
197
198
        cv2.imwrite(
            os.path.join(draw_img_save, "det_res_%s" % img_name_pure), src_im)
199
200
    if count > 1:
        print("Avg Time:", total_time / (count - 1))