main.cpp 12.8 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
WenmuZhou's avatar
WenmuZhou committed
23
#include <sys/stat.h>
MissPenguin's avatar
MissPenguin committed
24
25
26
27
28
29
30
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <include/ocr_cls.h>
WenmuZhou's avatar
WenmuZhou committed
31
#include <include/ocr_det.h>
MissPenguin's avatar
MissPenguin committed
32
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
33
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
34
35
#include <sys/stat.h>

MissPenguin's avatar
MissPenguin committed
36
#include "auto_log/autolog.h"
WenmuZhou's avatar
WenmuZhou committed
37
#include <gflags/gflags.h>
MissPenguin's avatar
MissPenguin committed
38
39
40
41

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
42
43
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
44
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
45
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
MissPenguin's avatar
MissPenguin committed
46
DEFINE_bool(benchmark, false, "Whether use benchmark.");
WenmuZhou's avatar
WenmuZhou committed
47
DEFINE_string(output, "./output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
48
49
50
51
52
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
WenmuZhou's avatar
WenmuZhou committed
53
54
DEFINE_double(det_db_box_thresh, 0.6, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.5, "Threshold of det_db_unclip_ratio.");
MissPenguin's avatar
MissPenguin committed
55
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
WenmuZhou's avatar
WenmuZhou committed
56
DEFINE_bool(use_dilation, false, "Whether use the dilation on output map.");
MissPenguin's avatar
MissPenguin committed
57
58
59
60
61
62
63
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
64
DEFINE_int32(rec_batch_num, 6, "rec_batch_num.");
WenmuZhou's avatar
WenmuZhou committed
65
DEFINE_string(rec_char_dict_path, "../../ppocr/utils/ppocr_keys_v1.txt",
WenmuZhou's avatar
WenmuZhou committed
66
              "Path of dictionary.");
MissPenguin's avatar
MissPenguin committed
67
68
69
70
71

using namespace std;
using namespace cv;
using namespace PaddleOCR;

WenmuZhou's avatar
WenmuZhou committed
72
static bool PathExists(const std::string &path) {
MissPenguin's avatar
MissPenguin committed
73
74
75
76
77
78
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
WenmuZhou's avatar
WenmuZhou committed
79
#endif // !_WIN32
MissPenguin's avatar
MissPenguin committed
80
81
}

MissPenguin's avatar
MissPenguin committed
82
int main_det(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
83
84
85
86
87
  std::vector<double> time_info = {0, 0, 0};
  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                 FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
WenmuZhou's avatar
WenmuZhou committed
88
                 FLAGS_use_polygon_score, FLAGS_use_dilation,
WenmuZhou's avatar
WenmuZhou committed
89
                 FLAGS_use_tensorrt, FLAGS_precision);
WenmuZhou's avatar
WenmuZhou committed
90

WenmuZhou's avatar
WenmuZhou committed
91
92
93
94
  if (!PathExists(FLAGS_output)) {
    mkdir(FLAGS_output.c_str(), 0777);
  }

WenmuZhou's avatar
WenmuZhou committed
95
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
WenmuZhou's avatar
WenmuZhou committed
96
97
98
    if (!FLAGS_benchmark) {
      cout << "The predict img: " << cv_all_img_names[i] << endl;
    }
WenmuZhou's avatar
WenmuZhou committed
99
100
101
102
103
104
105
106
107
108
109

    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
    }
    std::vector<std::vector<std::vector<int>>> boxes;
    std::vector<double> det_times;

    det.Run(srcimg, boxes, &det_times);
zhoujun's avatar
zhoujun committed
110
    // visualization
WenmuZhou's avatar
WenmuZhou committed
111
112
113
114
    if (FLAGS_visualize) {
      std::string file_name = Utility::basename(cv_all_img_names[i]);
      Utility::VisualizeBboxes(srcimg, boxes, FLAGS_output + "/" + file_name);
    }
WenmuZhou's avatar
WenmuZhou committed
115
116
117
118
    time_info[0] += det_times[0];
    time_info[1] += det_times[1];
    time_info[2] += det_times[2];

MissPenguin's avatar
MissPenguin committed
119
    if (FLAGS_benchmark) {
WenmuZhou's avatar
WenmuZhou committed
120
121
122
123
124
125
126
      cout << cv_all_img_names[i] << '\t';
      for (int n = 0; n < boxes.size(); n++) {
        for (int m = 0; m < boxes[n].size(); m++) {
          cout << boxes[n][m][0] << ' ' << boxes[n][m][1] << ' ';
        }
      }
      cout << endl;
MissPenguin's avatar
MissPenguin committed
127
    }
WenmuZhou's avatar
WenmuZhou committed
128
  }
MissPenguin's avatar
MissPenguin committed
129

WenmuZhou's avatar
WenmuZhou committed
130
131
132
133
134
135
136
137
  if (FLAGS_benchmark) {
    AutoLogger autolog("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                       FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                       FLAGS_precision, time_info, cv_all_img_names.size());
    autolog.report();
  }
  return 0;
}
MissPenguin's avatar
MissPenguin committed
138

MissPenguin's avatar
MissPenguin committed
139
int main_rec(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
140
  std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
141

WenmuZhou's avatar
WenmuZhou committed
142
  std::string rec_char_dict_path = FLAGS_rec_char_dict_path;
WenmuZhou's avatar
WenmuZhou committed
143
  if (FLAGS_benchmark)
WenmuZhou's avatar
WenmuZhou committed
144
145
    rec_char_dict_path = FLAGS_rec_char_dict_path.substr(6);
  cout << "label file: " << rec_char_dict_path << endl;
MissPenguin's avatar
MissPenguin committed
146

WenmuZhou's avatar
WenmuZhou committed
147
148
  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
WenmuZhou's avatar
WenmuZhou committed
149
                     rec_char_dict_path, FLAGS_use_tensorrt, FLAGS_precision,
WenmuZhou's avatar
WenmuZhou committed
150
151
152
153
154
155
156
157
158
                     FLAGS_rec_batch_num);

  std::vector<cv::Mat> img_list;
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
159
    }
WenmuZhou's avatar
WenmuZhou committed
160
161
    img_list.push_back(srcimg);
  }
WenmuZhou's avatar
WenmuZhou committed
162
163
  std::vector<std::string> rec_texts(img_list.size(), "");
  std::vector<float> rec_text_scores(img_list.size(), 0);
WenmuZhou's avatar
WenmuZhou committed
164
  std::vector<double> rec_times;
WenmuZhou's avatar
WenmuZhou committed
165
166
167
168
169
170
  rec.Run(img_list, rec_texts, rec_text_scores, &rec_times);
  // output rec results
  for (int i = 0; i < rec_texts.size(); i++) {
    cout << "The predict img: " << cv_all_img_names[i] << "\t" << rec_texts[i]
         << "\t" << rec_text_scores[i] << endl;
  }
WenmuZhou's avatar
WenmuZhou committed
171
172
173
  time_info[0] += rec_times[0];
  time_info[1] += rec_times[1];
  time_info[2] += rec_times[2];
MissPenguin's avatar
MissPenguin committed
174

WenmuZhou's avatar
WenmuZhou committed
175
176
177
178
179
180
181
182
183
  if (FLAGS_benchmark) {
    AutoLogger autolog("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                       FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                       FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                       time_info, cv_all_img_names.size());
    autolog.report();
  }
  return 0;
}
MissPenguin's avatar
MissPenguin committed
184

MissPenguin's avatar
MissPenguin committed
185
int main_system(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
186
187
  std::vector<double> time_info_det = {0, 0, 0};
  std::vector<double> time_info_rec = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
188

WenmuZhou's avatar
WenmuZhou committed
189
190
191
192
  if (!PathExists(FLAGS_output)) {
    mkdir(FLAGS_output.c_str(), 0777);
  }

WenmuZhou's avatar
WenmuZhou committed
193
194
195
196
  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                 FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
WenmuZhou's avatar
WenmuZhou committed
197
                 FLAGS_use_polygon_score, FLAGS_use_dilation,
WenmuZhou's avatar
WenmuZhou committed
198
                 FLAGS_use_tensorrt, FLAGS_precision);
WenmuZhou's avatar
WenmuZhou committed
199
200
201
202
203
204
205
206

  Classifier *cls = nullptr;
  if (FLAGS_use_angle_cls) {
    cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                         FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                         FLAGS_cls_thresh, FLAGS_use_tensorrt, FLAGS_precision);
  }

WenmuZhou's avatar
WenmuZhou committed
207
  std::string rec_char_dict_path = FLAGS_rec_char_dict_path;
WenmuZhou's avatar
WenmuZhou committed
208
  if (FLAGS_benchmark)
WenmuZhou's avatar
WenmuZhou committed
209
210
    rec_char_dict_path = FLAGS_rec_char_dict_path.substr(6);
  cout << "label file: " << rec_char_dict_path << endl;
WenmuZhou's avatar
WenmuZhou committed
211
212
213

  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
WenmuZhou's avatar
WenmuZhou committed
214
                     rec_char_dict_path, FLAGS_use_tensorrt, FLAGS_precision,
WenmuZhou's avatar
WenmuZhou committed
215
216
217
                     FLAGS_rec_batch_num);

  for (int i = 0; i < cv_all_img_names.size(); ++i) {
WenmuZhou's avatar
WenmuZhou committed
218
    cout << "The predict img: " << cv_all_img_names[i] << endl;
MissPenguin's avatar
MissPenguin committed
219

WenmuZhou's avatar
WenmuZhou committed
220
221
222
223
224
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
225
    }
zhoujun's avatar
zhoujun committed
226
    // det
WenmuZhou's avatar
WenmuZhou committed
227
228
229
    std::vector<std::vector<std::vector<int>>> boxes;
    std::vector<double> det_times;
    std::vector<double> rec_times;
MissPenguin's avatar
MissPenguin committed
230

WenmuZhou's avatar
WenmuZhou committed
231
    det.Run(srcimg, boxes, &det_times);
WenmuZhou's avatar
WenmuZhou committed
232
233
234
235
    if (FLAGS_visualize) {
      std::string file_name = Utility::basename(cv_all_img_names[i]);
      Utility::VisualizeBboxes(srcimg, boxes, FLAGS_output + "/" + file_name);
    }
WenmuZhou's avatar
WenmuZhou committed
236
237
238
    time_info_det[0] += det_times[0];
    time_info_det[1] += det_times[1];
    time_info_det[2] += det_times[2];
MissPenguin's avatar
MissPenguin committed
239

zhoujun's avatar
zhoujun committed
240
    // rec
WenmuZhou's avatar
WenmuZhou committed
241
242
243
244
245
246
247
248
    std::vector<cv::Mat> img_list;
    for (int j = 0; j < boxes.size(); j++) {
      cv::Mat crop_img;
      crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
      if (cls != nullptr) {
        crop_img = cls->Run(crop_img);
      }
      img_list.push_back(crop_img);
MissPenguin's avatar
MissPenguin committed
249
    }
WenmuZhou's avatar
WenmuZhou committed
250
251
252
253
254
255
256
257
    std::vector<std::string> rec_texts(img_list.size(), "");
    std::vector<float> rec_text_scores(img_list.size(), 0);
    rec.Run(img_list, rec_texts, rec_text_scores, &rec_times);
    // output rec results
    for (int i = 0; i < rec_texts.size(); i++) {
      std::cout << i << "\t" << rec_texts[i] << "\t" << rec_text_scores[i]
                << std::endl;
    }
WenmuZhou's avatar
WenmuZhou committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    time_info_rec[0] += rec_times[0];
    time_info_rec[1] += rec_times[1];
    time_info_rec[2] += rec_times[2];
  }

  if (FLAGS_benchmark) {
    AutoLogger autolog_det("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                           FLAGS_precision, time_info_det,
                           cv_all_img_names.size());
    AutoLogger autolog_rec("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                           time_info_rec, cv_all_img_names.size());
    autolog_det.report();
    std::cout << endl;
    autolog_rec.report();
  }
  return 0;
}

void check_params(char *mode) {
  if (strcmp(mode, "det") == 0) {
    if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
      std::cout << "Usage[det]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
286
    }
WenmuZhou's avatar
WenmuZhou committed
287
288
289
290
291
292
293
  }
  if (strcmp(mode, "rec") == 0) {
    if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
      std::cout << "Usage[rec]: ./ppocr "
                   "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
294
    }
WenmuZhou's avatar
WenmuZhou committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
  }
  if (strcmp(mode, "system") == 0) {
    if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() ||
         FLAGS_image_dir.empty()) ||
        (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
      std::cout << "Usage[system without angle cls]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      std::cout << "Usage[system with angle cls]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--use_angle_cls=true "
                << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
311
    }
WenmuZhou's avatar
WenmuZhou committed
312
313
314
315
316
317
  }
  if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" &&
      FLAGS_precision != "int8") {
    cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
    exit(1);
  }
MissPenguin's avatar
MissPenguin committed
318
319
}

MissPenguin's avatar
MissPenguin committed
320
int main(int argc, char **argv) {
WenmuZhou's avatar
WenmuZhou committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  if (argc <= 1 ||
      (strcmp(argv[1], "det") != 0 && strcmp(argv[1], "rec") != 0 &&
       strcmp(argv[1], "system") != 0)) {
    std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
    return -1;
  }
  std::cout << "mode: " << argv[1] << endl;

  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  check_params(argv[1]);

  if (!PathExists(FLAGS_image_dir)) {
    std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir
              << endl;
    exit(1);
  }

  std::vector<cv::String> cv_all_img_names;
  cv::glob(FLAGS_image_dir, cv_all_img_names);
  std::cout << "total images num: " << cv_all_img_names.size() << endl;
MissPenguin's avatar
MissPenguin committed
342

WenmuZhou's avatar
WenmuZhou committed
343
344
345
346
347
348
349
350
351
  if (strcmp(argv[1], "det") == 0) {
    return main_det(cv_all_img_names);
  }
  if (strcmp(argv[1], "rec") == 0) {
    return main_rec(cv_all_img_names);
  }
  if (strcmp(argv[1], "system") == 0) {
    return main_system(cv_all_img_names);
  }
MissPenguin's avatar
MissPenguin committed
352
}