learning_rate.py 8.16 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

WenmuZhou's avatar
WenmuZhou committed
20
from paddle.optimizer import lr
21
from .lr_scheduler import CyclicalCosineDecay
WenmuZhou's avatar
WenmuZhou committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35


class Linear(object):
    """
    Linear learning rate decay
    Args:
        lr (float): The initial learning rate. It is a python float number.
        epochs(int): The decay step size. It determines the decay cycle.
        end_lr(float, optional): The minimum final learning rate. Default: 0.0001.
        power(float, optional): Power of polynomial. Default: 1.0.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
WenmuZhou's avatar
WenmuZhou committed
36
                 learning_rate,
WenmuZhou's avatar
WenmuZhou committed
37
38
39
40
41
42
43
44
                 epochs,
                 step_each_epoch,
                 end_lr=0.0,
                 power=1.0,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Linear, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
45
        self.learning_rate = learning_rate
WenmuZhou's avatar
WenmuZhou committed
46
47
48
49
        self.epochs = epochs * step_each_epoch
        self.end_lr = end_lr
        self.power = power
        self.last_epoch = last_epoch
50
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
WenmuZhou's avatar
WenmuZhou committed
51
52

    def __call__(self):
WenmuZhou's avatar
WenmuZhou committed
53
54
        learning_rate = lr.PolynomialDecay(
            learning_rate=self.learning_rate,
WenmuZhou's avatar
WenmuZhou committed
55
56
57
58
59
            decay_steps=self.epochs,
            end_lr=self.end_lr,
            power=self.power,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
WenmuZhou's avatar
WenmuZhou committed
60
            learning_rate = lr.LinearWarmup(
WenmuZhou's avatar
WenmuZhou committed
61
62
63
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
WenmuZhou's avatar
WenmuZhou committed
64
                end_lr=self.learning_rate,
WenmuZhou's avatar
WenmuZhou committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
                last_epoch=self.last_epoch)
        return learning_rate


class Cosine(object):
    """
    Cosine learning rate decay
    lr = 0.05 * (math.cos(epoch * (math.pi / epochs)) + 1)
    Args:
        lr(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
WenmuZhou's avatar
WenmuZhou committed
81
                 learning_rate,
WenmuZhou's avatar
WenmuZhou committed
82
83
84
85
86
87
                 step_each_epoch,
                 epochs,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Cosine, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
88
        self.learning_rate = learning_rate
WenmuZhou's avatar
WenmuZhou committed
89
90
        self.T_max = step_each_epoch * epochs
        self.last_epoch = last_epoch
91
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
WenmuZhou's avatar
WenmuZhou committed
92
93

    def __call__(self):
WenmuZhou's avatar
WenmuZhou committed
94
95
96
97
        learning_rate = lr.CosineAnnealingDecay(
            learning_rate=self.learning_rate,
            T_max=self.T_max,
            last_epoch=self.last_epoch)
WenmuZhou's avatar
WenmuZhou committed
98
        if self.warmup_epoch > 0:
WenmuZhou's avatar
WenmuZhou committed
99
            learning_rate = lr.LinearWarmup(
WenmuZhou's avatar
WenmuZhou committed
100
101
102
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
WenmuZhou's avatar
WenmuZhou committed
103
                end_lr=self.learning_rate,
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
                last_epoch=self.last_epoch)
        return learning_rate


class Step(object):
    """
    Piecewise learning rate decay
    Args:
        step_each_epoch(int): steps each epoch
        learning_rate (float): The initial learning rate. It is a python float number.
        step_size (int): the interval to update.
        gamma (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * gamma`` .
            It should be less than 1.0. Default: 0.1.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
WenmuZhou's avatar
WenmuZhou committed
121
                 learning_rate,
WenmuZhou's avatar
WenmuZhou committed
122
123
124
125
126
127
128
129
                 step_size,
                 step_each_epoch,
                 gamma,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Step, self).__init__()
        self.step_size = step_each_epoch * step_size
WenmuZhou's avatar
WenmuZhou committed
130
        self.learning_rate = learning_rate
WenmuZhou's avatar
WenmuZhou committed
131
132
        self.gamma = gamma
        self.last_epoch = last_epoch
133
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
WenmuZhou's avatar
WenmuZhou committed
134
135

    def __call__(self):
WenmuZhou's avatar
WenmuZhou committed
136
137
        learning_rate = lr.StepDecay(
            learning_rate=self.learning_rate,
WenmuZhou's avatar
WenmuZhou committed
138
139
140
141
            step_size=self.step_size,
            gamma=self.gamma,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
WenmuZhou's avatar
WenmuZhou committed
142
            learning_rate = lr.LinearWarmup(
WenmuZhou's avatar
WenmuZhou committed
143
144
145
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
WenmuZhou's avatar
WenmuZhou committed
146
                end_lr=self.learning_rate,
WenmuZhou's avatar
WenmuZhou committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                last_epoch=self.last_epoch)
        return learning_rate


class Piecewise(object):
    """
    Piecewise learning rate decay
    Args:
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
        values(list): A list of learning rate values that will be picked during different epoch boundaries.
            The type of element in the list is python float.
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
                 step_each_epoch,
                 decay_epochs,
                 values,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(Piecewise, self).__init__()
        self.boundaries = [step_each_epoch * e for e in decay_epochs]
        self.values = values
        self.last_epoch = last_epoch
172
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
WenmuZhou's avatar
WenmuZhou committed
173
174

    def __call__(self):
WenmuZhou's avatar
WenmuZhou committed
175
        learning_rate = lr.PiecewiseDecay(
WenmuZhou's avatar
WenmuZhou committed
176
177
178
179
            boundaries=self.boundaries,
            values=self.values,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
WenmuZhou's avatar
WenmuZhou committed
180
            learning_rate = lr.LinearWarmup(
WenmuZhou's avatar
WenmuZhou committed
181
182
183
184
185
186
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
                end_lr=self.values[0],
                last_epoch=self.last_epoch)
        return learning_rate
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228


class CyclicalCosine(object):
    """
    Cyclical cosine learning rate decay
    Args:
        learning_rate(float): initial learning rate
        step_each_epoch(int): steps each epoch
        epochs(int): total training epochs
        cycle(int): period of the cosine learning rate
        last_epoch (int, optional):  The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
    """

    def __init__(self,
                 learning_rate,
                 step_each_epoch,
                 epochs,
                 cycle,
                 warmup_epoch=0,
                 last_epoch=-1,
                 **kwargs):
        super(CyclicalCosine, self).__init__()
        self.learning_rate = learning_rate
        self.T_max = step_each_epoch * epochs
        self.last_epoch = last_epoch
        self.warmup_epoch = round(warmup_epoch * step_each_epoch)
        self.cycle = round(cycle * step_each_epoch)

    def __call__(self):
        learning_rate = CyclicalCosineDecay(
            learning_rate=self.learning_rate,
            T_max=self.T_max,
            cycle=self.cycle,
            last_epoch=self.last_epoch)
        if self.warmup_epoch > 0:
            learning_rate = lr.LinearWarmup(
                learning_rate=learning_rate,
                warmup_steps=self.warmup_epoch,
                start_lr=0.0,
                end_lr=self.learning_rate,
                last_epoch=self.last_epoch)
        return learning_rate