Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
wangsen
paddle_dbnet
Commits
695c4db7
"tests/models/vscode:/vscode.git/clone" did not exist on "3bce0f3da1c0c13c5589cd97946ddbf58b8a9031"
Commit
695c4db7
authored
Nov 05, 2020
by
WenmuZhou
Browse files
switch learning_rate and lr
parent
d092a5a2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
23 additions
and
21 deletions
+23
-21
ppocr/optimizer/learning_rate.py
ppocr/optimizer/learning_rate.py
+23
-21
No files found.
ppocr/optimizer/learning_rate.py
View file @
695c4db7
...
...
@@ -17,7 +17,7 @@ from __future__ import division
from
__future__
import
print_function
from
__future__
import
unicode_literals
from
paddle.optimizer
import
lr
as
lr_scheduler
from
paddle.optimizer
import
lr
class
Linear
(
object
):
...
...
@@ -32,7 +32,7 @@ class Linear(object):
"""
def
__init__
(
self
,
l
r
,
l
earning_rate
,
epochs
,
step_each_epoch
,
end_lr
=
0.0
,
...
...
@@ -41,7 +41,7 @@ class Linear(object):
last_epoch
=-
1
,
**
kwargs
):
super
(
Linear
,
self
).
__init__
()
self
.
l
r
=
lr
self
.
l
earning_rate
=
learning_rate
self
.
epochs
=
epochs
*
step_each_epoch
self
.
end_lr
=
end_lr
self
.
power
=
power
...
...
@@ -49,18 +49,18 @@ class Linear(object):
self
.
warmup_epoch
=
warmup_epoch
*
step_each_epoch
def
__call__
(
self
):
learning_rate
=
lr
_scheduler
.
Polynomial
LR
(
learning_rate
=
self
.
l
r
,
learning_rate
=
lr
.
Polynomial
Decay
(
learning_rate
=
self
.
l
earning_rate
,
decay_steps
=
self
.
epochs
,
end_lr
=
self
.
end_lr
,
power
=
self
.
power
,
last_epoch
=
self
.
last_epoch
)
if
self
.
warmup_epoch
>
0
:
learning_rate
=
lr
_scheduler
.
Linear
Lr
Warmup
(
learning_rate
=
lr
.
LinearWarmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
self
.
warmup_epoch
,
start_lr
=
0.0
,
end_lr
=
self
.
l
r
,
end_lr
=
self
.
l
earning_rate
,
last_epoch
=
self
.
last_epoch
)
return
learning_rate
...
...
@@ -77,27 +77,29 @@ class Cosine(object):
"""
def
__init__
(
self
,
l
r
,
l
earning_rate
,
step_each_epoch
,
epochs
,
warmup_epoch
=
0
,
last_epoch
=-
1
,
**
kwargs
):
super
(
Cosine
,
self
).
__init__
()
self
.
l
r
=
lr
self
.
l
earning_rate
=
learning_rate
self
.
T_max
=
step_each_epoch
*
epochs
self
.
last_epoch
=
last_epoch
self
.
warmup_epoch
=
warmup_epoch
*
step_each_epoch
def
__call__
(
self
):
learning_rate
=
lr_scheduler
.
CosineAnnealingLR
(
learning_rate
=
self
.
lr
,
T_max
=
self
.
T_max
,
last_epoch
=
self
.
last_epoch
)
learning_rate
=
lr
.
CosineAnnealingDecay
(
learning_rate
=
self
.
learning_rate
,
T_max
=
self
.
T_max
,
last_epoch
=
self
.
last_epoch
)
if
self
.
warmup_epoch
>
0
:
learning_rate
=
lr
_scheduler
.
Linear
Lr
Warmup
(
learning_rate
=
lr
.
LinearWarmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
self
.
warmup_epoch
,
start_lr
=
0.0
,
end_lr
=
self
.
l
r
,
end_lr
=
self
.
l
earning_rate
,
last_epoch
=
self
.
last_epoch
)
return
learning_rate
...
...
@@ -115,7 +117,7 @@ class Step(object):
"""
def
__init__
(
self
,
l
r
,
l
earning_rate
,
step_size
,
step_each_epoch
,
gamma
,
...
...
@@ -124,23 +126,23 @@ class Step(object):
**
kwargs
):
super
(
Step
,
self
).
__init__
()
self
.
step_size
=
step_each_epoch
*
step_size
self
.
l
r
=
lr
self
.
l
earning_rate
=
learning_rate
self
.
gamma
=
gamma
self
.
last_epoch
=
last_epoch
self
.
warmup_epoch
=
warmup_epoch
*
step_each_epoch
def
__call__
(
self
):
learning_rate
=
lr
_scheduler
.
StepLR
(
learning_rate
=
self
.
l
r
,
learning_rate
=
lr
.
StepDecay
(
learning_rate
=
self
.
l
earning_rate
,
step_size
=
self
.
step_size
,
gamma
=
self
.
gamma
,
last_epoch
=
self
.
last_epoch
)
if
self
.
warmup_epoch
>
0
:
learning_rate
=
lr
_scheduler
.
Linear
Lr
Warmup
(
learning_rate
=
lr
.
LinearWarmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
self
.
warmup_epoch
,
start_lr
=
0.0
,
end_lr
=
self
.
l
r
,
end_lr
=
self
.
l
earning_rate
,
last_epoch
=
self
.
last_epoch
)
return
learning_rate
...
...
@@ -169,12 +171,12 @@ class Piecewise(object):
self
.
warmup_epoch
=
warmup_epoch
*
step_each_epoch
def
__call__
(
self
):
learning_rate
=
lr
_scheduler
.
Piecewise
LR
(
learning_rate
=
lr
.
Piecewise
Decay
(
boundaries
=
self
.
boundaries
,
values
=
self
.
values
,
last_epoch
=
self
.
last_epoch
)
if
self
.
warmup_epoch
>
0
:
learning_rate
=
lr
_scheduler
.
Linear
Lr
Warmup
(
learning_rate
=
lr
.
LinearWarmup
(
learning_rate
=
learning_rate
,
warmup_steps
=
self
.
warmup_epoch
,
start_lr
=
0.0
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment