predict_det.py 10.5 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

23
24
25
26
27
import cv2
import numpy as np
import time
import sys

LDOUBLEV's avatar
LDOUBLEV committed
28
import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
29
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
30
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
WenmuZhou's avatar
WenmuZhou committed
31
32
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
LDOUBLEV's avatar
LDOUBLEV committed
33

LDOUBLEV's avatar
LDOUBLEV committed
34
35
import tools.infer.benchmark_utils as benchmark_utils

WenmuZhou's avatar
WenmuZhou committed
36
37
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40

class TextDetector(object):
    def __init__(self, args):
LDOUBLEV's avatar
LDOUBLEV committed
41
        self.args = args
LDOUBLEV's avatar
LDOUBLEV committed
42
        self.det_algorithm = args.det_algorithm
MissPenguin's avatar
MissPenguin committed
43
        pre_process_list = [{
44
45
46
47
            'DetResizeForTest': {
                'limit_side_len': args.det_limit_side_len,
                'limit_type': args.det_limit_type
            }
MissPenguin's avatar
MissPenguin committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        }, {
            'NormalizeImage': {
                'std': [0.229, 0.224, 0.225],
                'mean': [0.485, 0.456, 0.406],
                'scale': '1./255.',
                'order': 'hwc'
            }
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': ['image', 'shape']
            }
        }]
LDOUBLEV's avatar
LDOUBLEV committed
62
63
        postprocess_params = {}
        if self.det_algorithm == "DB":
WenmuZhou's avatar
WenmuZhou committed
64
            postprocess_params['name'] = 'DBPostProcess'
LDOUBLEV's avatar
LDOUBLEV committed
65
66
67
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
68
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
69
            postprocess_params["use_dilation"] = args.use_dilation
littletomatodonkey's avatar
littletomatodonkey committed
70
            postprocess_params["score_mode"] = args.det_db_score_mode
MissPenguin's avatar
MissPenguin committed
71
        elif self.det_algorithm == "EAST":
WenmuZhou's avatar
WenmuZhou committed
72
            postprocess_params['name'] = 'EASTPostProcess'
MissPenguin's avatar
MissPenguin committed
73
74
75
76
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
        elif self.det_algorithm == "SAST":
MissPenguin's avatar
MissPenguin committed
77
            pre_process_list[0] = {
WenmuZhou's avatar
WenmuZhou committed
78
79
80
                'DetResizeForTest': {
                    'resize_long': args.det_limit_side_len
                }
MissPenguin's avatar
MissPenguin committed
81
            }
WenmuZhou's avatar
WenmuZhou committed
82
            postprocess_params['name'] = 'SASTPostProcess'
MissPenguin's avatar
MissPenguin committed
83
84
85
86
87
88
89
90
91
92
93
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
LDOUBLEV's avatar
LDOUBLEV committed
94
95
96
97
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
98
99
        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
100
101
102
103
        self.predictor, self.input_tensor, self.output_tensors, self.config = utility.create_predictor(
            args, 'det', logger)

        self.det_times = utility.Timer()
LDOUBLEV's avatar
LDOUBLEV committed
104
105

    def order_points_clockwise(self, pts):
106
107
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
108
        # sort the points based on their x-coordinates
109
        """
LDOUBLEV's avatar
LDOUBLEV committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

dyning's avatar
dyning committed
129
    def clip_det_res(self, points, img_height, img_width):
130
        for pno in range(points.shape[0]):
dyning's avatar
dyning committed
131
132
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
LDOUBLEV's avatar
LDOUBLEV committed
133
134
135
136
137
138
139
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
dyning's avatar
dyning committed
140
            box = self.clip_det_res(box, img_height, img_width)
LDOUBLEV's avatar
LDOUBLEV committed
141
142
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
MissPenguin's avatar
MissPenguin committed
143
            if rect_width <= 3 or rect_height <= 3:
LDOUBLEV's avatar
LDOUBLEV committed
144
145
146
147
148
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

149
150
151
152
153
154
155
156
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
157

LDOUBLEV's avatar
LDOUBLEV committed
158
159
    def __call__(self, img):
        ori_im = img.copy()
WenmuZhou's avatar
WenmuZhou committed
160
        data = {'image': img}
LDOUBLEV's avatar
LDOUBLEV committed
161
162
        self.det_times.total_time.start()
        self.det_times.preprocess_time.start()
WenmuZhou's avatar
WenmuZhou committed
163
164
165
        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
LDOUBLEV's avatar
LDOUBLEV committed
166
            return None, 0
WenmuZhou's avatar
WenmuZhou committed
167
168
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
169
        img = img.copy()
LDOUBLEV's avatar
LDOUBLEV committed
170
171
172

        self.det_times.preprocess_time.end()
        self.det_times.inference_time.start()
173

WenmuZhou's avatar
WenmuZhou committed
174
175
        self.input_tensor.copy_from_cpu(img)
        self.predictor.run()
176
177
178
179
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
LDOUBLEV's avatar
LDOUBLEV committed
180
        self.det_times.inference_time.end()
181

MissPenguin's avatar
MissPenguin committed
182
183
184
185
186
187
188
189
190
        preds = {}
        if self.det_algorithm == "EAST":
            preds['f_geo'] = outputs[0]
            preds['f_score'] = outputs[1]
        elif self.det_algorithm == 'SAST':
            preds['f_border'] = outputs[0]
            preds['f_score'] = outputs[1]
            preds['f_tco'] = outputs[2]
            preds['f_tvo'] = outputs[3]
WenmuZhou's avatar
WenmuZhou committed
191
        elif self.det_algorithm == 'DB':
WenmuZhou's avatar
WenmuZhou committed
192
            preds['maps'] = outputs[0]
WenmuZhou's avatar
WenmuZhou committed
193
194
        else:
            raise NotImplementedError
LDOUBLEV's avatar
LDOUBLEV committed
195
196
197

        self.det_times.postprocess_time.start()

WenmuZhou's avatar
fix mem  
WenmuZhou committed
198
        self.predictor.try_shrink_memory()
WenmuZhou's avatar
WenmuZhou committed
199
200
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
MissPenguin's avatar
MissPenguin committed
201
202
203
204
        if self.det_algorithm == "SAST" and self.det_sast_polygon:
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
LDOUBLEV's avatar
LDOUBLEV committed
205
206
207
208
209

        self.det_times.postprocess_time.end()
        self.det_times.total_time.end()
        self.det_times.img_num += 1
        return dt_boxes, self.det_times.total_time.value()
LDOUBLEV's avatar
LDOUBLEV committed
210
211
212
213


if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
214
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
215
216
217
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey committed
218
    draw_img_save = "./inference_results"
LDOUBLEV's avatar
LDOUBLEV committed
219
220
221
222
223
224
225
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0

    # warmup 10 times
    fake_img = np.random.uniform(-1, 1, [640, 640, 3]).astype(np.float32)
    for i in range(10):
        dt_boxes, _ = text_detector(fake_img)

littletomatodonkey's avatar
littletomatodonkey committed
226
227
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
228
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
229
230
231
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
232
233
234
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
LDOUBLEV's avatar
LDOUBLEV committed
235
236
237
        st = time.time()
        dt_boxes, _ = text_detector(img)
        elapse = time.time() - st
LDOUBLEV's avatar
LDOUBLEV committed
238
239
240
        if count > 0:
            total_time += elapse
        count += 1
LDOUBLEV's avatar
LDOUBLEV committed
241
242
243
244
245
246
247

        if args.benchmark:
            cm, gm, gu = utility.get_current_memory_mb(0)
            cpu_mem += cm
            gpu_mem += gm
            gpu_util += gu

WenmuZhou's avatar
WenmuZhou committed
248
        logger.info("Predict time of {}: {}".format(image_file, elapse))
dyning's avatar
dyning committed
249
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
WenmuZhou's avatar
WenmuZhou committed
250
        img_name_pure = os.path.split(image_file)[-1]
WenmuZhou's avatar
WenmuZhou committed
251
252
        img_path = os.path.join(draw_img_save,
                                "det_res_{}".format(img_name_pure))
LDOUBLEV's avatar
LDOUBLEV committed
253

WenmuZhou's avatar
WenmuZhou committed
254
        logger.info("The visualized image saved in {}".format(img_path))
LDOUBLEV's avatar
LDOUBLEV committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    # print the information about memory and time-spent
    if args.benchmark:
        mems = {
            'cpu_rss_mb': cpu_mem / count,
            'gpu_rss_mb': gpu_mem / count,
            'gpu_util': gpu_util * 100 / count
        }
    else:
        mems = None
    logger.info("The predict time about detection module is as follows: ")
    det_time_dict = text_detector.det_times.report(average=True)
    det_model_name = args.det_model_dir

    if args.benchmark:
        # construct log information
        model_info = {
            'model_name': args.det_model_dir.split('/')[-1],
            'precision': args.precision
        }
        data_info = {
            'batch_size': 1,
            'shape': 'dynamic_shape',
            'data_num': det_time_dict['img_num']
        }
        perf_info = {
            'preprocess_time_s': det_time_dict['preprocess_time'],
            'inference_time_s': det_time_dict['inference_time'],
            'postprocess_time_s': det_time_dict['postprocess_time'],
            'total_time_s': det_time_dict['total_time']
        }
        benchmark_log = benchmark_utils.PaddleInferBenchmark(
            text_detector.config, model_info, data_info, perf_info, mems)
        benchmark_log("Det")