predict_rec.py 6.47 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
dyning's avatar
dyning committed
18
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import cv2
import copy
import numpy as np
import math
import time
from ppocr.utils.character import CharacterOps


class TextRecognizer(object):
    def __init__(self, args):
        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="rec")
        image_shape = [int(v) for v in args.rec_image_shape.split(",")]
        self.rec_image_shape = image_shape
dyning's avatar
dyning committed
33
        self.character_type = args.rec_char_type
34
        self.rec_batch_num = args.rec_batch_num
tink2123's avatar
tink2123 committed
35
        self.rec_algorithm = args.rec_algorithm
LDOUBLEV's avatar
LDOUBLEV committed
36
37
38
        char_ops_params = {}
        char_ops_params["character_type"] = args.rec_char_type
        char_ops_params["character_dict_path"] = args.rec_char_dict_path
tink2123's avatar
tink2123 committed
39
40
        if self.rec_algorithm != "RARE":
            char_ops_params['loss_type'] = 'ctc'
tink2123's avatar
tink2123 committed
41
            self.loss_type = 'ctc'
tink2123's avatar
tink2123 committed
42
43
        else:
            char_ops_params['loss_type'] = 'attention'
tink2123's avatar
tink2123 committed
44
            self.loss_type = 'attention'
LDOUBLEV's avatar
LDOUBLEV committed
45
46
        self.char_ops = CharacterOps(char_ops_params)

47
    def resize_norm_img(self, img, max_wh_ratio):
LDOUBLEV's avatar
LDOUBLEV committed
48
        imgC, imgH, imgW = self.rec_image_shape
dyning's avatar
dyning committed
49
50
        if self.character_type == "ch":
            imgW = int(32 * max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_num = len(img_list)
        rec_res = []
70
        batch_num = self.rec_batch_num
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
74
        predict_time = 0
        for beg_img_no in range(0, img_num, batch_num):
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
75
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
76
            for ino in range(beg_img_no, end_img_no):
77
78
79
80
81
                h, w = img_list[ino].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
82
83
84
85
86
87
88
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
            starttime = time.time()
            self.input_tensor.copy_from_cpu(norm_img_batch)
            self.predictor.zero_copy_run()
tink2123's avatar
tink2123 committed
89

tink2123's avatar
tink2123 committed
90
            if self.loss_type == "ctc":
tink2123's avatar
tink2123 committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                rec_idx_lod = self.output_tensors[0].lod()[0]
                predict_batch = self.output_tensors[1].copy_to_cpu()
                predict_lod = self.output_tensors[1].lod()[0]
                elapse = time.time() - starttime
                predict_time += elapse
                for rno in range(len(rec_idx_lod) - 1):
                    beg = rec_idx_lod[rno]
                    end = rec_idx_lod[rno + 1]
                    rec_idx_tmp = rec_idx_batch[beg:end, 0]
                    preds_text = self.char_ops.decode(rec_idx_tmp)
                    beg = predict_lod[rno]
                    end = predict_lod[rno + 1]
                    probs = predict_batch[beg:end, :]
                    ind = np.argmax(probs, axis=1)
                    blank = probs.shape[1]
                    valid_ind = np.where(ind != (blank - 1))[0]
                    score = np.mean(probs[valid_ind, ind[valid_ind]])
                    rec_res.append([preds_text, score])
            else:
                rec_idx_batch = self.output_tensors[0].copy_to_cpu()
                predict_batch = self.output_tensors[1].copy_to_cpu()
tink2123's avatar
tink2123 committed
113
114
                elapse = time.time() - starttime
                predict_time += elapse
tink2123's avatar
tink2123 committed
115
116
117
118
119
120
121
122
123
124
125
                for rno in range(len(rec_idx_batch)):
                    end_pos = np.where(rec_idx_batch[rno, :] == 1)[0]
                    if len(end_pos) <= 1:
                        preds = rec_idx_batch[rno, 1:]
                        score = np.mean(predict_batch[rno, 1:])
                    else:
                        preds = rec_idx_batch[rno, 1:end_pos[1]]
                        score = np.mean(predict_batch[rno, 1:end_pos[1]])
                    preds_text = self.char_ops.decode(preds)
                    rec_res.append([preds_text, score])

LDOUBLEV's avatar
LDOUBLEV committed
126
127
128
129
130
        return rec_res, predict_time


if __name__ == "__main__":
    args = utility.parse_args()
dyning's avatar
dyning committed
131
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
132
133
134
135
136
137
138
139
140
141
    text_recognizer = TextRecognizer(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
tink2123's avatar
tink2123 committed
142
143
    try:
        rec_res, predict_time = text_recognizer(img_list)
tink2123's avatar
tink2123 committed
144
145
    except Exception as e:
        print(e)
tink2123's avatar
tink2123 committed
146
        logger.info(
tink2123's avatar
tink2123 committed
147
148
149
150
            "ERROR!!!! \n"
            "Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
            "If your model has tps module:  "
            "TPS does not support variable shape.\n"
tink2123's avatar
tink2123 committed
151
            "Please set --rec_image_shape=input_shape and --rec_char_type='en' ")
tink2123's avatar
tink2123 committed
152
        exit()
LDOUBLEV's avatar
LDOUBLEV committed
153
154
155
156
    for ino in range(len(img_list)):
        print("Predicts of %s:%s" % (valid_image_file_list[ino], rec_res[ino]))
    print("Total predict time for %d images:%.3f" %
          (len(img_list), predict_time))