det_sast_head.py 11.4 KB
Newer Older
licx's avatar
licx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict


class SASTHead(object):
    """
    SAST: 
licx's avatar
licx committed
27
        see arxiv: https://arxiv.org/abs/1908.05498
licx's avatar
licx committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    args:
        params(dict): the super parameters for network build
    """

    def __init__(self, params):
        self.model_name = params['model_name']
        self.with_cab = params['with_cab']

    def FPN_Up_Fusion(self, blocks):
        """
        blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
                1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
        """
        f = [blocks['block_6'], blocks['block_5'], blocks['block_4'], blocks['block_3'], blocks['block_2']]
        num_outputs = [256, 256, 192, 192, 128]
        g = [None, None, None, None, None]
        h = [None, None, None, None, None] 
        for i in range(5):
            h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
                                filter_size=1, stride=1, act=None, name='fpn_up_h'+str(i))

        for i in range(4):
            if i == 0:
                g[i] = deconv_bn_layer(input=h[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g0')
licx's avatar
licx committed
52
                #print("g[{}] shape: {}".format(i, g[i].shape))
licx's avatar
licx committed
53
54
55
56
57
58
59
60
            else:
                g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
                g[i] = fluid.layers.relu(g[i])
                #g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
                #                    filter_size=1, stride=1, act='relu')
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
                                    filter_size=3, stride=1, act='relu', name='fpn_up_g%d_1'%i)
                g[i] = deconv_bn_layer(input=g[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g%d_2'%i)
licx's avatar
licx committed
61
                #print("g[{}] shape: {}".format(i, g[i].shape))
licx's avatar
licx committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

        g[4] = fluid.layers.elementwise_add(x=g[3], y=h[4])
        g[4] = fluid.layers.relu(g[4])
        g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
                            filter_size=3, stride=1, act='relu', name='fpn_up_fusion_1')
        g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
                            filter_size=1, stride=1, act=None, name='fpn_up_fusion_2')
        
        return g[4]

    def FPN_Down_Fusion(self, blocks):
        """
        blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
                1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
        """
        f = [blocks['block_0'], blocks['block_1'], blocks['block_2']]
        num_outputs = [32, 64, 128]
        g = [None, None, None]
        h = [None, None, None] 
        for i in range(3):
            h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
                                filter_size=3, stride=1, act=None, name='fpn_down_h'+str(i))
        for i in range(2):
            if i == 0:
                g[i] = conv_bn_layer(input=h[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g0')
            else:
                g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
                g[i] = fluid.layers.relu(g[i])
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i], filter_size=3, stride=1, act='relu', name='fpn_down_g%d_1'%i)
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g%d_2'%i)
licx's avatar
licx committed
92
            # print("g[{}] shape: {}".format(i, g[i].shape)) 
licx's avatar
licx committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        g[2] = fluid.layers.elementwise_add(x=g[1], y=h[2])
        g[2] = fluid.layers.relu(g[2])
        g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
                            filter_size=3, stride=1, act='relu', name='fpn_down_fusion_1')
        g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
                            filter_size=1, stride=1, act=None, name='fpn_down_fusion_2')
        return g[2]

    def SAST_Header1(self, f_common):
        """Detector header."""
        #f_score
        f_score = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_score1')
        f_score = conv_bn_layer(input=f_score, num_filters=64, filter_size=3, stride=1, act='relu', name='f_score2')
        f_score = conv_bn_layer(input=f_score, num_filters=128, filter_size=1, stride=1, act='relu', name='f_score3')
        f_score = conv_bn_layer(input=f_score, num_filters=1, filter_size=3, stride=1, name='f_score4')
        f_score = fluid.layers.sigmoid(f_score)
licx's avatar
licx committed
109
        # print("f_score shape: {}".format(f_score.shape))
licx's avatar
licx committed
110
111
112
113
114
115

        #f_boder
        f_border = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_border1')
        f_border = conv_bn_layer(input=f_border, num_filters=64, filter_size=3, stride=1, act='relu', name='f_border2')
        f_border = conv_bn_layer(input=f_border, num_filters=128, filter_size=1, stride=1, act='relu', name='f_border3')
        f_border = conv_bn_layer(input=f_border, num_filters=4, filter_size=3, stride=1, name='f_border4')
licx's avatar
licx committed
116
        # print("f_border shape: {}".format(f_border.shape))
licx's avatar
licx committed
117
118
119
120
121
122
123
124
125
126
        
        return f_score, f_border

    def SAST_Header2(self, f_common):
        """Detector header.""" 
        #f_tvo
        f_tvo = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tvo1')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tvo2')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tvo3')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=8, filter_size=3, stride=1, name='f_tvo4')
licx's avatar
licx committed
127
        # print("f_tvo shape: {}".format(f_tvo.shape))
licx's avatar
licx committed
128
129
130
131
132
133

        #f_tco
        f_tco = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tco1')
        f_tco = conv_bn_layer(input=f_tco, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tco2')
        f_tco = conv_bn_layer(input=f_tco, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tco3')
        f_tco = conv_bn_layer(input=f_tco, num_filters=2, filter_size=3, stride=1, name='f_tco4')
licx's avatar
licx committed
134
        # print("f_tco shape: {}".format(f_tco.shape))
licx's avatar
licx committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        
        return f_tvo, f_tco

    def cross_attention(self, f_common):
        """
        """
        f_shape = fluid.layers.shape(f_common)
        f_theta = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_theta')
        f_phi = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_phi')
        f_g = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_g')
        ### horizon
        fh_theta = f_theta
        fh_phi = f_phi
        fh_g = f_g
        #flatten
        fh_theta = fluid.layers.transpose(fh_theta, [0, 2, 3, 1])
        fh_theta = fluid.layers.reshape(fh_theta, [f_shape[0] * f_shape[2], f_shape[3], 128])
        fh_phi = fluid.layers.transpose(fh_phi, [0, 2, 3, 1])
        fh_phi = fluid.layers.reshape(fh_phi, [f_shape[0] * f_shape[2], f_shape[3], 128])
        fh_g = fluid.layers.transpose(fh_g, [0, 2, 3, 1])
        fh_g = fluid.layers.reshape(fh_g, [f_shape[0] * f_shape[2], f_shape[3], 128])
        #correlation
        fh_attn = fluid.layers.matmul(fh_theta, fluid.layers.transpose(fh_phi, [0, 2, 1]))
        #scale
        fh_attn = fh_attn / (128 ** 0.5)
        fh_attn = fluid.layers.softmax(fh_attn)
        #weighted sum
        fh_weight = fluid.layers.matmul(fh_attn, fh_g)
        fh_weight = fluid.layers.reshape(fh_weight, [f_shape[0], f_shape[2], f_shape[3], 128])
licx's avatar
licx committed
164
        # print("fh_weight: {}".format(fh_weight.shape))
licx's avatar
licx committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        fh_weight = fluid.layers.transpose(fh_weight, [0, 3, 1, 2])
        fh_weight = conv_bn_layer(input=fh_weight, num_filters=128, filter_size=1, stride=1, name='fh_weight')
        #short cut
        fh_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fh_sc')
        f_h = fluid.layers.relu(fh_weight + fh_sc)
        ######
        #vertical
        fv_theta = fluid.layers.transpose(f_theta, [0, 1, 3, 2])
        fv_phi = fluid.layers.transpose(f_phi, [0, 1, 3, 2])
        fv_g = fluid.layers.transpose(f_g, [0, 1, 3, 2])
        #flatten
        fv_theta = fluid.layers.transpose(fv_theta, [0, 2, 3, 1])
        fv_theta = fluid.layers.reshape(fv_theta, [f_shape[0] * f_shape[3], f_shape[2], 128])
        fv_phi = fluid.layers.transpose(fv_phi, [0, 2, 3, 1])
        fv_phi = fluid.layers.reshape(fv_phi, [f_shape[0] * f_shape[3], f_shape[2], 128])
        fv_g = fluid.layers.transpose(fv_g, [0, 2, 3, 1])
        fv_g = fluid.layers.reshape(fv_g, [f_shape[0] * f_shape[3], f_shape[2], 128])
        #correlation
        fv_attn = fluid.layers.matmul(fv_theta, fluid.layers.transpose(fv_phi, [0, 2, 1]))
        #scale
        fv_attn = fv_attn / (128 ** 0.5)
        fv_attn = fluid.layers.softmax(fv_attn)
        #weighted sum
        fv_weight = fluid.layers.matmul(fv_attn, fv_g)
        fv_weight = fluid.layers.reshape(fv_weight, [f_shape[0], f_shape[3], f_shape[2], 128])
licx's avatar
licx committed
190
        # print("fv_weight: {}".format(fv_weight.shape))
licx's avatar
licx committed
191
192
193
194
195
196
197
198
199
200
201
        fv_weight = fluid.layers.transpose(fv_weight, [0, 3, 2, 1])
        fv_weight = conv_bn_layer(input=fv_weight, num_filters=128, filter_size=1, stride=1, name='fv_weight')
        #short cut
        fv_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fv_sc')
        f_v = fluid.layers.relu(fv_weight + fv_sc)
        ######
        f_attn = fluid.layers.concat([f_h, f_v], axis=1)
        f_attn = conv_bn_layer(input=f_attn, num_filters=128, filter_size=1, stride=1, act='relu', name='f_attn')  
        return f_attn
        
    def __call__(self, blocks, with_cab=False):
licx's avatar
licx committed
202
203
        # for k, v in blocks.items():
        #     print(k, v.shape)
licx's avatar
licx committed
204
205
206

        #down fpn
        f_down = self.FPN_Down_Fusion(blocks)
licx's avatar
licx committed
207
        # print("f_down shape: {}".format(f_down.shape))
licx's avatar
licx committed
208
209
        #up fpn
        f_up = self.FPN_Up_Fusion(blocks)
licx's avatar
licx committed
210
        # print("f_up shape: {}".format(f_up.shape))
licx's avatar
licx committed
211
212
213
        #fusion
        f_common = fluid.layers.elementwise_add(x=f_down, y=f_up)
        f_common = fluid.layers.relu(f_common)
licx's avatar
licx committed
214
        # print("f_common: {}".format(f_common.shape))
licx's avatar
licx committed
215
216
        
        if self.with_cab:
licx's avatar
licx committed
217
            # print('enhence f_common with CAB.')
licx's avatar
licx committed
218
219
220
221
222
223
224
225
226
227
228
            f_common = self.cross_attention(f_common)
            
        f_score, f_border= self.SAST_Header1(f_common)
        f_tvo, f_tco = self.SAST_Header2(f_common)

        predicts = OrderedDict()
        predicts['f_score'] = f_score
        predicts['f_border'] = f_border
        predicts['f_tvo'] = f_tvo
        predicts['f_tco'] = f_tco
        return predicts