det_sast_head.py 11.3 KB
Newer Older
licx's avatar
licx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from ..common_functions import conv_bn_layer, deconv_bn_layer
from collections import OrderedDict


class SASTHead(object):
    """
    SAST: 
        see arxiv: https://
    args:
        params(dict): the super parameters for network build
    """

    def __init__(self, params):
        self.model_name = params['model_name']
        self.with_cab = params['with_cab']

    def FPN_Up_Fusion(self, blocks):
        """
        blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
                1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
        """
        f = [blocks['block_6'], blocks['block_5'], blocks['block_4'], blocks['block_3'], blocks['block_2']]
        num_outputs = [256, 256, 192, 192, 128]
        g = [None, None, None, None, None]
        h = [None, None, None, None, None] 
        for i in range(5):
            h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
                                filter_size=1, stride=1, act=None, name='fpn_up_h'+str(i))

        for i in range(4):
            if i == 0:
                g[i] = deconv_bn_layer(input=h[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g0')
                print("g[{}] shape: {}".format(i, g[i].shape))
            else:
                g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
                g[i] = fluid.layers.relu(g[i])
                #g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
                #                    filter_size=1, stride=1, act='relu')
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i],
                                    filter_size=3, stride=1, act='relu', name='fpn_up_g%d_1'%i)
                g[i] = deconv_bn_layer(input=g[i], num_filters=num_outputs[i + 1], act=None, name='fpn_up_g%d_2'%i)
                print("g[{}] shape: {}".format(i, g[i].shape))

        g[4] = fluid.layers.elementwise_add(x=g[3], y=h[4])
        g[4] = fluid.layers.relu(g[4])
        g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
                            filter_size=3, stride=1, act='relu', name='fpn_up_fusion_1')
        g[4] = conv_bn_layer(input=g[4], num_filters=num_outputs[4],
                            filter_size=1, stride=1, act=None, name='fpn_up_fusion_2')
        
        return g[4]

    def FPN_Down_Fusion(self, blocks):
        """
        blocks{}: contain block_2, block_3, block_4, block_5, block_6, block_7 with
                1/4, 1/8, 1/16, 1/32, 1/64, 1/128 resolution.
        """
        f = [blocks['block_0'], blocks['block_1'], blocks['block_2']]
        num_outputs = [32, 64, 128]
        g = [None, None, None]
        h = [None, None, None] 
        for i in range(3):
            h[i] = conv_bn_layer(input=f[i], num_filters=num_outputs[i],
                                filter_size=3, stride=1, act=None, name='fpn_down_h'+str(i))
        for i in range(2):
            if i == 0:
                g[i] = conv_bn_layer(input=h[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g0')
            else:
                g[i] = fluid.layers.elementwise_add(x=g[i - 1], y=h[i])
                g[i] = fluid.layers.relu(g[i])
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i], filter_size=3, stride=1, act='relu', name='fpn_down_g%d_1'%i)
                g[i] = conv_bn_layer(input=g[i], num_filters=num_outputs[i+1], filter_size=3, stride=2, act=None, name='fpn_down_g%d_2'%i)
            print("g[{}] shape: {}".format(i, g[i].shape)) 
        g[2] = fluid.layers.elementwise_add(x=g[1], y=h[2])
        g[2] = fluid.layers.relu(g[2])
        g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
                            filter_size=3, stride=1, act='relu', name='fpn_down_fusion_1')
        g[2] = conv_bn_layer(input=g[2], num_filters=num_outputs[2],
                            filter_size=1, stride=1, act=None, name='fpn_down_fusion_2')
        return g[2]

    def SAST_Header1(self, f_common):
        """Detector header."""
        #f_score
        f_score = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_score1')
        f_score = conv_bn_layer(input=f_score, num_filters=64, filter_size=3, stride=1, act='relu', name='f_score2')
        f_score = conv_bn_layer(input=f_score, num_filters=128, filter_size=1, stride=1, act='relu', name='f_score3')
        f_score = conv_bn_layer(input=f_score, num_filters=1, filter_size=3, stride=1, name='f_score4')
        f_score = fluid.layers.sigmoid(f_score)
        print("f_score shape: {}".format(f_score.shape))

        #f_boder
        f_border = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_border1')
        f_border = conv_bn_layer(input=f_border, num_filters=64, filter_size=3, stride=1, act='relu', name='f_border2')
        f_border = conv_bn_layer(input=f_border, num_filters=128, filter_size=1, stride=1, act='relu', name='f_border3')
        f_border = conv_bn_layer(input=f_border, num_filters=4, filter_size=3, stride=1, name='f_border4')
        print("f_border shape: {}".format(f_border.shape))
        
        return f_score, f_border

    def SAST_Header2(self, f_common):
        """Detector header.""" 
        #f_tvo
        f_tvo = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tvo1')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tvo2')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tvo3')
        f_tvo = conv_bn_layer(input=f_tvo, num_filters=8, filter_size=3, stride=1, name='f_tvo4')
        print("f_tvo shape: {}".format(f_tvo.shape))

        #f_tco
        f_tco = conv_bn_layer(input=f_common, num_filters=64, filter_size=1, stride=1, act='relu', name='f_tco1')
        f_tco = conv_bn_layer(input=f_tco, num_filters=64, filter_size=3, stride=1, act='relu', name='f_tco2')
        f_tco = conv_bn_layer(input=f_tco, num_filters=128, filter_size=1, stride=1, act='relu', name='f_tco3')
        f_tco = conv_bn_layer(input=f_tco, num_filters=2, filter_size=3, stride=1, name='f_tco4')
        print("f_tco shape: {}".format(f_tco.shape))
        
        return f_tvo, f_tco

    def cross_attention(self, f_common):
        """
        """
        f_shape = fluid.layers.shape(f_common)
        f_theta = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_theta')
        f_phi = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_phi')
        f_g = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, act='relu', name='f_g')
        ### horizon
        fh_theta = f_theta
        fh_phi = f_phi
        fh_g = f_g
        #flatten
        fh_theta = fluid.layers.transpose(fh_theta, [0, 2, 3, 1])
        fh_theta = fluid.layers.reshape(fh_theta, [f_shape[0] * f_shape[2], f_shape[3], 128])
        fh_phi = fluid.layers.transpose(fh_phi, [0, 2, 3, 1])
        fh_phi = fluid.layers.reshape(fh_phi, [f_shape[0] * f_shape[2], f_shape[3], 128])
        fh_g = fluid.layers.transpose(fh_g, [0, 2, 3, 1])
        fh_g = fluid.layers.reshape(fh_g, [f_shape[0] * f_shape[2], f_shape[3], 128])
        #correlation
        fh_attn = fluid.layers.matmul(fh_theta, fluid.layers.transpose(fh_phi, [0, 2, 1]))
        #scale
        fh_attn = fh_attn / (128 ** 0.5)
        fh_attn = fluid.layers.softmax(fh_attn)
        #weighted sum
        fh_weight = fluid.layers.matmul(fh_attn, fh_g)
        fh_weight = fluid.layers.reshape(fh_weight, [f_shape[0], f_shape[2], f_shape[3], 128])
        print("fh_weight: {}".format(fh_weight.shape))
        fh_weight = fluid.layers.transpose(fh_weight, [0, 3, 1, 2])
        fh_weight = conv_bn_layer(input=fh_weight, num_filters=128, filter_size=1, stride=1, name='fh_weight')
        #short cut
        fh_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fh_sc')
        f_h = fluid.layers.relu(fh_weight + fh_sc)
        ######
        #vertical
        fv_theta = fluid.layers.transpose(f_theta, [0, 1, 3, 2])
        fv_phi = fluid.layers.transpose(f_phi, [0, 1, 3, 2])
        fv_g = fluid.layers.transpose(f_g, [0, 1, 3, 2])
        #flatten
        fv_theta = fluid.layers.transpose(fv_theta, [0, 2, 3, 1])
        fv_theta = fluid.layers.reshape(fv_theta, [f_shape[0] * f_shape[3], f_shape[2], 128])
        fv_phi = fluid.layers.transpose(fv_phi, [0, 2, 3, 1])
        fv_phi = fluid.layers.reshape(fv_phi, [f_shape[0] * f_shape[3], f_shape[2], 128])
        fv_g = fluid.layers.transpose(fv_g, [0, 2, 3, 1])
        fv_g = fluid.layers.reshape(fv_g, [f_shape[0] * f_shape[3], f_shape[2], 128])
        #correlation
        fv_attn = fluid.layers.matmul(fv_theta, fluid.layers.transpose(fv_phi, [0, 2, 1]))
        #scale
        fv_attn = fv_attn / (128 ** 0.5)
        fv_attn = fluid.layers.softmax(fv_attn)
        #weighted sum
        fv_weight = fluid.layers.matmul(fv_attn, fv_g)
        fv_weight = fluid.layers.reshape(fv_weight, [f_shape[0], f_shape[3], f_shape[2], 128])
        print("fv_weight: {}".format(fv_weight.shape))
        fv_weight = fluid.layers.transpose(fv_weight, [0, 3, 2, 1])
        fv_weight = conv_bn_layer(input=fv_weight, num_filters=128, filter_size=1, stride=1, name='fv_weight')
        #short cut
        fv_sc = conv_bn_layer(input=f_common, num_filters=128, filter_size=1, stride=1, name='fv_sc')
        f_v = fluid.layers.relu(fv_weight + fv_sc)
        ######
        f_attn = fluid.layers.concat([f_h, f_v], axis=1)
        f_attn = conv_bn_layer(input=f_attn, num_filters=128, filter_size=1, stride=1, act='relu', name='f_attn')  
        return f_attn
        
    def __call__(self, blocks, with_cab=False):
        for k, v in blocks.items():
            print(k, v.shape)

        #down fpn
        f_down = self.FPN_Down_Fusion(blocks)
        print("f_down shape: {}".format(f_down.shape))
        #up fpn
        f_up = self.FPN_Up_Fusion(blocks)
        print("f_up shape: {}".format(f_up.shape))
        #fusion
        f_common = fluid.layers.elementwise_add(x=f_down, y=f_up)
        f_common = fluid.layers.relu(f_common)
        print("f_common: {}".format(f_common.shape))
        
        if self.with_cab:
            print('enhence f_common with CAB.')
            f_common = self.cross_attention(f_common)
            
        f_score, f_border= self.SAST_Header1(f_common)
        f_tvo, f_tco = self.SAST_Header2(f_common)

        predicts = OrderedDict()
        predicts['f_score'] = f_score
        predicts['f_border'] = f_border
        predicts['f_tvo'] = f_tvo
        predicts['f_tco'] = f_tco
        return predicts