infer_det.py 5.58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from copy import deepcopy
import json

LDOUBLEV's avatar
LDOUBLEV committed
23
24
import os
import sys
25
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
26
sys.path.append(__dir__)
27
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
28
29
30
31
32
33
34
35
36
37


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
LDOUBLEV's avatar
LDOUBLEV committed
38
# not take any effect.
39
40
41
42
43
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
LDOUBLEV's avatar
LDOUBLEV committed
44
from ppocr.utils.utility import create_module, get_image_file_list
45
46
47
import program
from ppocr.utils.save_load import init_model
from ppocr.data.reader_main import reader_main
LDOUBLEV's avatar
LDOUBLEV committed
48
import cv2
49
50
51
52
53

from ppocr.utils.utility import initial_logger
logger = initial_logger()


LDOUBLEV's avatar
LDOUBLEV committed
54
def draw_det_res(dt_boxes, config, img, img_name):
55
56
    if len(dt_boxes) > 0:
        import cv2
LDOUBLEV's avatar
LDOUBLEV committed
57
        src_im = img
58
59
60
        for box in dt_boxes:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
LDOUBLEV's avatar
LDOUBLEV committed
61
        save_det_path = os.path.dirname(config['Global'][
62
63
64
            'save_res_path']) + "/det_results/"
        if not os.path.exists(save_det_path):
            os.makedirs(save_det_path)
LDOUBLEV's avatar
LDOUBLEV committed
65
        save_path = os.path.join(save_det_path, os.path.basename(img_name))
66
67
68
69
70
71
72
        cv2.imwrite(save_path, src_im)
        logger.info("The detected Image saved in {}".format(save_path))


def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
littletomatodonkey's avatar
littletomatodonkey committed
73
    logger.info(config)
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    det_model = create_module(config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, eval_outputs = det_model(mode="test")
            fetch_name_list = list(eval_outputs.keys())
            eval_fetch_list = [eval_outputs[v].name for v in fetch_name_list]

    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    # load checkpoints
    checkpoints = config['Global'].get('checkpoints')
    if checkpoints:
        path = checkpoints
        fluid.load(eval_prog, path, exe)
        logger.info("Finish initing model from {}".format(path))
    else:
        raise Exception("{} not exists!".format(checkpoints))

    save_res_path = config['Global']['save_res_path']
LDOUBLEV's avatar
LDOUBLEV committed
105
106
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))
107
    with open(save_res_path, "wb") as fout:
LDOUBLEV's avatar
LDOUBLEV committed
108

LDOUBLEV's avatar
LDOUBLEV committed
109
        test_reader = reader_main(config=config, mode='test')
110
111
112
113
114
115
116
117
118
119
120
121
        tackling_num = 0
        for data in test_reader():
            img_num = len(data)
            tackling_num = tackling_num + img_num
            logger.info("tackling_num:%d", tackling_num)
            img_list = []
            ratio_list = []
            img_name_list = []
            for ino in range(img_num):
                img_list.append(data[ino][0])
                ratio_list.append(data[ino][1])
                img_name_list.append(data[ino][2])
LDOUBLEV's avatar
LDOUBLEV committed
122

123
124
125
126
127
128
129
130
131
132
            img_list = np.concatenate(img_list, axis=0)
            outs = exe.run(eval_prog,\
                feed={'image': img_list},\
                fetch_list=eval_fetch_list)

            global_params = config['Global']
            postprocess_params = deepcopy(config["PostProcess"])
            postprocess_params.update(global_params)
            postprocess = create_module(postprocess_params['function'])\
                (params=postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
133
134
135
136
137
            if config['Global']['algorithm'] == 'EAST':
                dic = {'f_score': outs[0], 'f_geo': outs[1]}
            elif config['Global']['algorithm'] == 'DB':
                dic = {'maps': outs[0]}
            else:
138
                raise Exception("only support algorithm: ['EAST', 'DB']")
LDOUBLEV's avatar
LDOUBLEV committed
139
            dt_boxes_list = postprocess(dic, ratio_list)
140
141
142
143
144
145
146
147
148
149
            for ino in range(img_num):
                dt_boxes = dt_boxes_list[ino]
                img_name = img_name_list[ino]
                dt_boxes_json = []
                for box in dt_boxes:
                    tmp_json = {"transcription": ""}
                    tmp_json['points'] = box.tolist()
                    dt_boxes_json.append(tmp_json)
                otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
                fout.write(otstr.encode())
LDOUBLEV's avatar
LDOUBLEV committed
150
151
                src_img = cv2.imread(img_name)
                draw_det_res(dt_boxes, config, src_img, img_name)
152
153
154
155
156
157
158
159

    logger.info("success!")


if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()