infer_det.py 6.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import time
import numpy as np
from copy import deepcopy
import json

# from paddle.fluid.contrib.model_stat import summary


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be
# set before `import paddle`. Otherwise, it would
LDOUBLEV's avatar
LDOUBLEV committed
37
# not take any effect.
38
39
40
41
42
43
44
45
46
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
from ppocr.utils.utility import create_module
import program
from ppocr.utils.save_load import init_model
from ppocr.data.reader_main import reader_main
LDOUBLEV's avatar
LDOUBLEV committed
47
import cv2
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

from ppocr.utils.utility import initial_logger
logger = initial_logger()


def draw_det_res(dt_boxes, config, img_name, ino):
    if len(dt_boxes) > 0:
        img_set_path = config['TestReader']['img_set_dir']
        img_path = img_set_path + img_name
        import cv2
        src_im = cv2.imread(img_path)
        for box in dt_boxes:
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        save_det_path = os.path.basename(config['Global'][
            'save_res_path']) + "/det_results/"
        if not os.path.exists(save_det_path):
            os.makedirs(save_det_path)
        save_path = os.path.join(save_det_path, "det_{}.jpg".format(img_name))
        cv2.imwrite(save_path, src_im)
        logger.info("The detected Image saved in {}".format(save_path))


LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def simple_reader(img_file, config):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

    img_end = ['jpg', 'png', 'jpeg', 'JPEG', 'JPG', 'bmp']
    if os.path.isfile(img_file) and img_file.split('.')[-1] in img_end:
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
            if single_file.split('.')[-1] in img_end:
                imgs_lists.append(os.path.join(img_file, single_file))
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))

    batch_size = config['Global']['test_batch_size_per_card']
    global_params = config['Global']
    params = deepcopy(config['TestReader'])
    params.update(global_params)
    reader_function = params['process_function']
    process_function = create_module(reader_function)(params)

    def batch_iter_reader():
        batch_outs = []
        for img_path in imgs_lists:
            img = cv2.imread(img_path)
            if img.shape[-1] == 1 or len(list(img.shape)) == 2:
                img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
            if img is None:
                logger.info("load image error:" + img_path)
                continue
            outs = process_function(img)
            outs.append(os.path.basename(img_path))
            print(outs[0].shape, outs[2])
            batch_outs.append(outs)
            if len(batch_outs) == batch_size:
                yield batch_outs
                batch_outs = []
        if len(batch_outs) != 0:
            yield batch_outs

    return batch_iter_reader


115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def main():
    config = program.load_config(FLAGS.config)
    program.merge_config(FLAGS.opt)
    print(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    program.check_gpu(use_gpu)

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    det_model = create_module(config['Architecture']['function'])(params=config)

    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            _, eval_outputs = det_model(mode="test")
            fetch_name_list = list(eval_outputs.keys())
            eval_fetch_list = [eval_outputs[v].name for v in fetch_name_list]

    eval_prog = eval_prog.clone(for_test=True)
    exe.run(startup_prog)

    # load checkpoints
    checkpoints = config['Global'].get('checkpoints')
    if checkpoints:
        path = checkpoints
        fluid.load(eval_prog, path, exe)
        logger.info("Finish initing model from {}".format(path))
    else:
        raise Exception("{} not exists!".format(checkpoints))

    save_res_path = config['Global']['save_res_path']
    with open(save_res_path, "wb") as fout:
LDOUBLEV's avatar
LDOUBLEV committed
151
152
153
        # test_reader = reader_main(config=config, mode='test')
        single_img_path = config['TestReader']['single_img_path']
        test_reader = simple_reader(img_file=single_img_path, config=config)
154
155
156
157
158
159
160
161
162
163
164
165
        tackling_num = 0
        for data in test_reader():
            img_num = len(data)
            tackling_num = tackling_num + img_num
            logger.info("tackling_num:%d", tackling_num)
            img_list = []
            ratio_list = []
            img_name_list = []
            for ino in range(img_num):
                img_list.append(data[ino][0])
                ratio_list.append(data[ino][1])
                img_name_list.append(data[ino][2])
LDOUBLEV's avatar
LDOUBLEV committed
166

167
168
169
170
171
172
173
174
175
176
            img_list = np.concatenate(img_list, axis=0)
            outs = exe.run(eval_prog,\
                feed={'image': img_list},\
                fetch_list=eval_fetch_list)

            global_params = config['Global']
            postprocess_params = deepcopy(config["PostProcess"])
            postprocess_params.update(global_params)
            postprocess = create_module(postprocess_params['function'])\
                (params=postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
177
            dt_boxes_list = postprocess({"maps": outs[0]}, ratio_list)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            for ino in range(img_num):
                dt_boxes = dt_boxes_list[ino]
                img_name = img_name_list[ino]
                dt_boxes_json = []
                for box in dt_boxes:
                    tmp_json = {"transcription": ""}
                    tmp_json['points'] = box.tolist()
                    dt_boxes_json.append(tmp_json)
                otstr = img_name + "\t" + json.dumps(dt_boxes_json) + "\n"
                fout.write(otstr.encode())
                draw_det_res(dt_boxes, config, img_name, ino)

    logger.info("success!")


if __name__ == '__main__':
    parser = program.ArgsParser()
    FLAGS = parser.parse_args()
    main()