"backend/apps/vscode:/vscode.git/clone" did not exist on "e1fa453edae689c5eea6af0b23e3dc1e158b302f"
readme_en.md 10.9 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
- [Server-side C++ Inference](#server-side-c-inference)
  - [1. Prepare the Environment](#1-prepare-the-environment)
    - [Environment](#environment)
    - [1.1 Compile OpenCV](#11-compile-opencv)
    - [1.2 Compile or Download or the Paddle Inference Library](#12-compile-or-download-or-the-paddle-inference-library)
      - [1.2.1 Direct download and installation](#121-direct-download-and-installation)
      - [1.2.2 Compile the inference source code](#122-compile-the-inference-source-code)
  - [2. Compile and Run the Demo](#2-compile-and-run-the-demo)
    - [2.1 Export the inference model](#21-export-the-inference-model)
    - [2.2 Compile PaddleOCR C++ inference demo](#22-compile-paddleocr-c-inference-demo)
    - [Run the demo](#run-the-demo)
        - [1. run det demo:](#1-run-det-demo)
        - [2. run rec demo:](#2-run-rec-demo)
        - [3. run system demo:](#3-run-system-demo)
  - [3. FAQ](#3-faq)

17
# Server-side C++ Inference
littletomatodonkey's avatar
littletomatodonkey committed
18

fanruinet's avatar
fanruinet committed
19
20
21
This chapter introduces the C++ deployment steps of the PaddleOCR model. The corresponding Python predictive deployment method refers to [document](../../doc/doc_ch/inference.md).
C++ is better than python in terms of performance. Therefore, in CPU and GPU deployment scenarios, C++ deployment is mostly used.
This section will introduce how to configure the C++ environment and deploy PaddleOCR in Linux (CPU\GPU) environment. For Windows deployment please refer to [Windows](./docs/windows_vs2019_build.md) compilation guidelines.
littletomatodonkey's avatar
littletomatodonkey committed
22
23


24
## 1. Prepare the Environment
littletomatodonkey's avatar
littletomatodonkey committed
25
26
27
28

### Environment

- Linux, docker is recommended.
WenmuZhou's avatar
WenmuZhou committed
29
- Windows.
littletomatodonkey's avatar
littletomatodonkey committed
30
31


32
### 1.1 Compile OpenCV
littletomatodonkey's avatar
littletomatodonkey committed
33

fanruinet's avatar
fanruinet committed
34
* First of all, you need to download the source code compiled package in the Linux environment from the OpenCV official website. Taking OpenCV 3.4.7 as an example, the download command is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
35

littletomatodonkey's avatar
littletomatodonkey committed
36
```bash
WenmuZhou's avatar
WenmuZhou committed
37
cd deploy/cpp_infer
littletomatodonkey's avatar
littletomatodonkey committed
38
39
wget https://paddleocr.bj.bcebos.com/libs/opencv/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
littletomatodonkey's avatar
littletomatodonkey committed
40
41
```

fanruinet's avatar
fanruinet committed
42
Finally, you will see the folder of `opencv-3.4.7/` in the current directory.
littletomatodonkey's avatar
littletomatodonkey committed
43

fanruinet's avatar
fanruinet committed
44
* Compile OpenCV, the OpenCV source path (`root_path`) and installation path (`install_path`) should be set by yourself. Enter the OpenCV source code path and compile it in the following way.
littletomatodonkey's avatar
littletomatodonkey committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


```shell
root_path=your_opencv_root_path
install_path=${root_path}/opencv3

rm -rf build
mkdir build
cd build

cmake .. \
    -DCMAKE_INSTALL_PREFIX=${install_path} \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_SHARED_LIBS=OFF \
    -DWITH_IPP=OFF \
    -DBUILD_IPP_IW=OFF \
    -DWITH_LAPACK=OFF \
    -DWITH_EIGEN=OFF \
    -DCMAKE_INSTALL_LIBDIR=lib64 \
    -DWITH_ZLIB=ON \
    -DBUILD_ZLIB=ON \
    -DWITH_JPEG=ON \
    -DBUILD_JPEG=ON \
    -DWITH_PNG=ON \
    -DBUILD_PNG=ON \
    -DWITH_TIFF=ON \
    -DBUILD_TIFF=ON

make -j
make install
```

fanruinet's avatar
fanruinet committed
77
In the above commands, `root_path` is the downloaded OpenCV source code path, and `install_path` is the installation path of OpenCV. After `make install` is completed, the OpenCV header file and library file will be generated in this folder for later OCR source code compilation.
littletomatodonkey's avatar
littletomatodonkey committed
78
79
80



fanruinet's avatar
fanruinet committed
81
The final file structure under the OpenCV installation path is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
82
83
84
85
86
87
88
89
90
91

```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```

92
### 1.2 Compile or Download or the Paddle Inference Library
littletomatodonkey's avatar
littletomatodonkey committed
93
94
95

* There are 2 ways to obtain the Paddle inference library, described in detail below.

littletomatodonkey's avatar
littletomatodonkey committed
96
#### 1.2.1 Direct download and installation
littletomatodonkey's avatar
littletomatodonkey committed
97

WenmuZhou's avatar
WenmuZhou committed
98
[Paddle inference library official website](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#linux). You can review and select the appropriate version of the inference library on the official website.
littletomatodonkey's avatar
littletomatodonkey committed
99
100


fanruinet's avatar
fanruinet committed
101
* After downloading, use the following command to extract files.
littletomatodonkey's avatar
littletomatodonkey committed
102
103
104
105
106

```
tar -xf paddle_inference.tgz
```

fanruinet's avatar
fanruinet committed
107
Finally you will see the the folder of `paddle_inference/` in the current path.
littletomatodonkey's avatar
littletomatodonkey committed
108

fanruinet's avatar
fanruinet committed
109
110
111
#### 1.2.2 Compile the inference source code
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle GitHub repository and compile the inference library from the source code. It is recommended to download the inference library with paddle version greater than or equal to 2.0.1.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from GitHub, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
112
113
114
115


```shell
git clone https://github.com/PaddlePaddle/Paddle.git
LDOUBLEV's avatar
LDOUBLEV committed
116
git checkout develop
littletomatodonkey's avatar
littletomatodonkey committed
117
118
```

fanruinet's avatar
fanruinet committed
119
* Enter the Paddle directory and run the following commands to compile the paddle inference library.
littletomatodonkey's avatar
littletomatodonkey committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

```shell
rm -rf build
mkdir build
cd build

cmake  .. \
    -DWITH_CONTRIB=OFF \
    -DWITH_MKL=ON \
    -DWITH_MKLDNN=ON  \
    -DWITH_TESTING=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DWITH_INFERENCE_API_TEST=OFF \
    -DON_INFER=ON \
    -DWITH_PYTHON=ON
make -j
make inference_lib_dist
```

LDOUBLEV's avatar
LDOUBLEV committed
139
For more compilation parameter options, please refer to the [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi).
littletomatodonkey's avatar
littletomatodonkey committed
140
141


LDOUBLEV's avatar
LDOUBLEV committed
142
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
littletomatodonkey's avatar
littletomatodonkey committed
143
144

```
LDOUBLEV's avatar
LDOUBLEV committed
145
build/paddle_inference_install_dir/
littletomatodonkey's avatar
littletomatodonkey committed
146
147
148
149
150
151
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```

fanruinet's avatar
fanruinet committed
152
`paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.
littletomatodonkey's avatar
littletomatodonkey committed
153
154


155
## 2. Compile and Run the Demo
littletomatodonkey's avatar
littletomatodonkey committed
156
157
158

### 2.1 Export the inference model

fanruinet's avatar
fanruinet committed
159
* You can refer to [Model inference](../../doc/doc_ch/inference.md) and export the inference model. After the model is exported, assuming it is placed in the `inference` directory, the directory structure is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
160
161
162
163

```
inference/
|-- det_db
MissPenguin's avatar
MissPenguin committed
164
165
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey committed
166
|-- rec_rcnn
MissPenguin's avatar
MissPenguin committed
167
168
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey committed
169
170
171
172
173
174
175
176
177
```


### 2.2 Compile PaddleOCR C++ inference demo


* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.

```shell
MissPenguin's avatar
MissPenguin committed
178
sh tools/build.sh
littletomatodonkey's avatar
littletomatodonkey committed
179
180
```

MissPenguin's avatar
MissPenguin committed
181
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
182
183
184
185
186
187
188
189

```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
```

fanruinet's avatar
fanruinet committed
190
`OPENCV_DIR` is the OpenCV installation path; `LIB_DIR` is the download (`paddle_inference` folder)
LDOUBLEV's avatar
LDOUBLEV committed
191
or the generated Paddle inference library path (`build/paddle_inference_install_dir` folder);
fanruinet's avatar
fanruinet committed
192
`CUDA_LIB_DIR` is the CUDA library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cuDNN library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
littletomatodonkey's avatar
littletomatodonkey committed
193
194


MissPenguin's avatar
MissPenguin committed
195
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
littletomatodonkey's avatar
littletomatodonkey committed
196
197
198


### Run the demo
fanruinet's avatar
fanruinet committed
199
Execute the built executable file:
MissPenguin's avatar
MissPenguin committed
200
201
```shell
./build/ppocr <mode> [--param1] [--param2] [...]
202
```
fanruinet's avatar
fanruinet committed
203
204
205
206
207
208
209
210
211
`mode` is a required parameter,and the valid values are

mode value | Model used
-----|------
det  | Detection only
rec  | Recognition only
system | End-to-end system

Specifically,
MissPenguin's avatar
MissPenguin committed
212
213

##### 1. run det demo:
littletomatodonkey's avatar
littletomatodonkey committed
214
```shell
MissPenguin's avatar
MissPenguin committed
215
./build/ppocr det \
MissPenguin's avatar
MissPenguin committed
216
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
MissPenguin's avatar
MissPenguin committed
217
    --image_dir=../../doc/imgs/12.jpg
littletomatodonkey's avatar
littletomatodonkey committed
218
```
MissPenguin's avatar
MissPenguin committed
219
##### 2. run rec demo:
MissPenguin's avatar
MissPenguin committed
220
```shell
MissPenguin's avatar
MissPenguin committed
221
./build/ppocr rec \
MissPenguin's avatar
MissPenguin committed
222
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
MissPenguin's avatar
MissPenguin committed
223
    --image_dir=../../doc/imgs_words/ch/
zhoujun's avatar
zhoujun committed
224
```
MissPenguin's avatar
MissPenguin committed
225
##### 3. run system demo:
MissPenguin's avatar
MissPenguin committed
226
227
```shell
# without text direction classifier
MissPenguin's avatar
MissPenguin committed
228
./build/ppocr system \
MissPenguin's avatar
MissPenguin committed
229
230
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
MissPenguin's avatar
MissPenguin committed
231
232
    --image_dir=../../doc/imgs/12.jpg
# with text direction classifier
MissPenguin's avatar
MissPenguin committed
233
./build/ppocr system \
MissPenguin's avatar
MissPenguin committed
234
235
236
237
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
    --use_angle_cls=true \
    --cls_model_dir=inference/ch_ppocr_mobile_v2.0_cls_infer \
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
MissPenguin's avatar
MissPenguin committed
238
239
240
    --image_dir=../../doc/imgs/12.jpg
```

fanruinet's avatar
fanruinet committed
241
More parameters are as follows,
MissPenguin's avatar
MissPenguin committed
242

fanruinet's avatar
fanruinet committed
243
- Common parameters
MissPenguin's avatar
MissPenguin committed
244

MissPenguin's avatar
MissPenguin committed
245
246
247
248
249
250
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
WenmuZhou's avatar
WenmuZhou committed
251
|enable_mkldnn|bool|true|Whether to use mkdlnn library|
WenmuZhou's avatar
WenmuZhou committed
252
|output|str|./output|Path where visualization results are saved|
MissPenguin's avatar
MissPenguin committed
253

fanruinet's avatar
fanruinet committed
254
- Detection related parameters
MissPenguin's avatar
MissPenguin committed
255
256
257

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
258
259
260
261
262
263
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|use_polygon_score|bool|false|Whether to use polygon box to calculate bbox score, false means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
WenmuZhou's avatar
WenmuZhou committed
264
|visualize|bool|true|Whether to visualize the results,when it is set as true, the prediction results will be saved in the folder specified by the `output` field on an image with the same name as the input image.|
MissPenguin's avatar
MissPenguin committed
265

fanruinet's avatar
fanruinet committed
266
- Classifier related parameters
MissPenguin's avatar
MissPenguin committed
267
268
269

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
270
271
272
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the  direction classifier|
MissPenguin's avatar
MissPenguin committed
273

fanruinet's avatar
fanruinet committed
274
- Recognition related parameters
MissPenguin's avatar
MissPenguin committed
275
276
277

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
278
|rec_model_dir|string|-|Address of recognition inference model|
WenmuZhou's avatar
WenmuZhou committed
279
|rec_char_dict_path|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
MissPenguin's avatar
MissPenguin committed
280

WenmuZhou's avatar
WenmuZhou committed
281
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
zhoujun's avatar
zhoujun committed
282
283


littletomatodonkey's avatar
littletomatodonkey committed
284
285
286
The detection results will be shown on the screen, which is as follows.

<div align="center">
littletomatodonkey's avatar
littletomatodonkey committed
287
    <img src="./imgs/cpp_infer_pred_12.png" width="600">
littletomatodonkey's avatar
littletomatodonkey committed
288
289
290
</div>


WenmuZhou's avatar
WenmuZhou committed
291
## 3. FAQ
littletomatodonkey's avatar
littletomatodonkey committed
292

WenmuZhou's avatar
WenmuZhou committed
293
 1.  Encountered the error `unable to access 'https://github.com/LDOUBLEV/AutoLog.git/': gnutls_handshake() failed: The TLS connection was non-properly terminated.`, change the github address in `deploy/cpp_infer/external-cmake/auto-log.cmake` to the https://gitee.com/Double_V/AutoLog address.