readme_en.md 9.61 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
# Server-side C++ inference

LDOUBLEV's avatar
LDOUBLEV committed
3
4
5
6
This chapter introduces the C++ deployment method of the PaddleOCR model, and the corresponding python predictive deployment method refers to [document](../../doc/doc_ch/inference.md).
C++ is better than python in terms of performance calculation. Therefore, in most CPU and GPU deployment scenarios, C++ deployment is mostly used.
This section will introduce how to configure the C++ environment and complete it in the Linux\Windows (CPU\GPU) environment
PaddleOCR model deployment.
littletomatodonkey's avatar
littletomatodonkey committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20


## 1. Prepare the environment

### Environment

- Linux, docker is recommended.


### 1.1 Compile opencv

* First of all, you need to download the source code compiled package in the Linux environment from the opencv official website. Taking opencv3.4.7 as an example, the download command is as follows.

```
WenmuZhou's avatar
WenmuZhou committed
21
cd deploy/cpp_infer
littletomatodonkey's avatar
littletomatodonkey committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
```

Finally, you can see the folder of `opencv-3.4.7/` in the current directory.

* Compile opencv, the opencv source path (`root_path`) and installation path (`install_path`) should be set by yourself. Enter the opencv source code path and compile it in the following way.


```shell
root_path=your_opencv_root_path
install_path=${root_path}/opencv3

rm -rf build
mkdir build
cd build

cmake .. \
    -DCMAKE_INSTALL_PREFIX=${install_path} \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_SHARED_LIBS=OFF \
    -DWITH_IPP=OFF \
    -DBUILD_IPP_IW=OFF \
    -DWITH_LAPACK=OFF \
    -DWITH_EIGEN=OFF \
    -DCMAKE_INSTALL_LIBDIR=lib64 \
    -DWITH_ZLIB=ON \
    -DBUILD_ZLIB=ON \
    -DWITH_JPEG=ON \
    -DBUILD_JPEG=ON \
    -DWITH_PNG=ON \
    -DBUILD_PNG=ON \
    -DWITH_TIFF=ON \
    -DBUILD_TIFF=ON

make -j
make install
```

Among them, `root_path` is the downloaded opencv source code path, and `install_path` is the installation path of opencv. After `make install` is completed, the opencv header file and library file will be generated in this folder for later OCR source code compilation.



The final file structure under the opencv installation path is as follows.

```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```

### 1.2 Compile or download or  the Paddle inference library

* There are 2 ways to obtain the Paddle inference library, described in detail below.

littletomatodonkey's avatar
littletomatodonkey committed
80
#### 1.2.1 Direct download and installation
littletomatodonkey's avatar
littletomatodonkey committed
81

LDOUBLEV's avatar
LDOUBLEV committed
82
[Paddle inference library official website](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html). You can view and select the appropriate version of the inference library on the official website.
littletomatodonkey's avatar
littletomatodonkey committed
83
84
85
86
87
88
89
90
91
92
93


* After downloading, use the following method to uncompress.

```
tar -xf paddle_inference.tgz
```

Finally you can see the following files in the folder of `paddle_inference/`.

#### 1.2.2 Compile from the source code
LDOUBLEV's avatar
LDOUBLEV committed
94
95
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle github repository and compile the inference library from the source code. It is recommended to download the inference library with paddle version greater than or equal to 2.0.1.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from github, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
96
97
98
99


```shell
git clone https://github.com/PaddlePaddle/Paddle.git
LDOUBLEV's avatar
LDOUBLEV committed
100
git checkout release/2.1
littletomatodonkey's avatar
littletomatodonkey committed
101
102
```

LDOUBLEV's avatar
LDOUBLEV committed
103
* After entering the Paddle directory, the commands to compile the paddle inference library are as follows.
littletomatodonkey's avatar
littletomatodonkey committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

```shell
rm -rf build
mkdir build
cd build

cmake  .. \
    -DWITH_CONTRIB=OFF \
    -DWITH_MKL=ON \
    -DWITH_MKLDNN=ON  \
    -DWITH_TESTING=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DWITH_INFERENCE_API_TEST=OFF \
    -DON_INFER=ON \
    -DWITH_PYTHON=ON
make -j
make inference_lib_dist
```

LDOUBLEV's avatar
LDOUBLEV committed
123
For more compilation parameter options, please refer to the [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi).
littletomatodonkey's avatar
littletomatodonkey committed
124
125


LDOUBLEV's avatar
LDOUBLEV committed
126
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
littletomatodonkey's avatar
littletomatodonkey committed
127
128

```
LDOUBLEV's avatar
LDOUBLEV committed
129
build/paddle_inference_install_dir/
littletomatodonkey's avatar
littletomatodonkey committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```

Among them, `paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.


## 2. Compile and run the demo

### 2.1 Export the inference model

* You can refer to [Model inference](../../doc/doc_ch/inference.md),export the inference model. After the model is exported, assuming it is placed in the `inference` directory, the directory structure is as follows.

```
inference/
|-- det_db
MissPenguin's avatar
MissPenguin committed
148
149
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey committed
150
|-- rec_rcnn
MissPenguin's avatar
MissPenguin committed
151
152
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey committed
153
154
155
156
157
158
159
160
161
```


### 2.2 Compile PaddleOCR C++ inference demo


* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.

```shell
MissPenguin's avatar
MissPenguin committed
162
sh tools/build.sh
littletomatodonkey's avatar
littletomatodonkey committed
163
164
```

MissPenguin's avatar
MissPenguin committed
165
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
166
167
168
169
170
171
172
173

```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
```

LDOUBLEV's avatar
LDOUBLEV committed
174
175
176
`OPENCV_DIR` is the opencv installation path; `LIB_DIR` is the download (`paddle_inference` folder)
or the generated Paddle inference library path (`build/paddle_inference_install_dir` folder);
`CUDA_LIB_DIR` is the cuda library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cudnn library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
littletomatodonkey's avatar
littletomatodonkey committed
177
178


MissPenguin's avatar
MissPenguin committed
179
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
littletomatodonkey's avatar
littletomatodonkey committed
180
181
182


### Run the demo
MissPenguin's avatar
MissPenguin committed
183
184
185
186
187
188
189
Execute the built executable file:  
```shell
./build/ppocr <mode> [--param1] [--param2] [...]
```  
Here, `mode` is a required parameter,and the value range is ['det', 'rec', 'system'], representing using detection only, using recognition only and using the end-to-end system respectively. Specifically,

##### 1. run det demo:
littletomatodonkey's avatar
littletomatodonkey committed
190
```shell
MissPenguin's avatar
MissPenguin committed
191
./build/ppocr det \
MissPenguin's avatar
MissPenguin committed
192
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
MissPenguin's avatar
MissPenguin committed
193
    --image_dir=../../doc/imgs/12.jpg
littletomatodonkey's avatar
littletomatodonkey committed
194
```
MissPenguin's avatar
MissPenguin committed
195
##### 2. run rec demo:
MissPenguin's avatar
MissPenguin committed
196
```shell
MissPenguin's avatar
MissPenguin committed
197
./build/ppocr rec \
MissPenguin's avatar
MissPenguin committed
198
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
MissPenguin's avatar
MissPenguin committed
199
    --image_dir=../../doc/imgs_words/ch/
zhoujun's avatar
zhoujun committed
200
```
MissPenguin's avatar
MissPenguin committed
201
##### 3. run system demo:
MissPenguin's avatar
MissPenguin committed
202
203
```shell
# without text direction classifier
MissPenguin's avatar
MissPenguin committed
204
./build/ppocr system \
MissPenguin's avatar
MissPenguin committed
205
206
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
MissPenguin's avatar
MissPenguin committed
207
208
    --image_dir=../../doc/imgs/12.jpg
# with text direction classifier
MissPenguin's avatar
MissPenguin committed
209
./build/ppocr system \
MissPenguin's avatar
MissPenguin committed
210
211
212
213
    --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer \
    --use_angle_cls=true \
    --cls_model_dir=inference/ch_ppocr_mobile_v2.0_cls_infer \
    --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer \
MissPenguin's avatar
MissPenguin committed
214
215
216
217
218
    --image_dir=../../doc/imgs/12.jpg
```

More parameters are as follows,  

MissPenguin's avatar
MissPenguin committed
219
220
- common parameters

MissPenguin's avatar
MissPenguin committed
221
222
223
224
225
226
227
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
|use_mkldnn|bool|true|Whether to use mkdlnn library|
MissPenguin's avatar
MissPenguin committed
228
229
230
231
232

- detection related parameters

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
233
234
235
236
237
238
239
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
|use_polygon_score|bool|false|Whether to use polygon box to calculate bbox score, false means to use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
|visualize|bool|true|Whether to visualize the results,when it is set as true, The prediction result will be save in the image file `./ocr_vis.png`.|
MissPenguin's avatar
MissPenguin committed
240
241
242
243
244

- classifier related parameters

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
245
246
247
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the  direction classifier|
MissPenguin's avatar
MissPenguin committed
248
249
250
251
252

- recogniton related parameters

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
253
254
255
256
|rec_model_dir|string|-|Address of recognition inference model|
|char_list_file|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|

* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `char_list_file` and `rec_model_dir`.
zhoujun's avatar
zhoujun committed
257
258


littletomatodonkey's avatar
littletomatodonkey committed
259
260
261
The detection results will be shown on the screen, which is as follows.

<div align="center">
littletomatodonkey's avatar
littletomatodonkey committed
262
    <img src="./imgs/cpp_infer_pred_12.png" width="600">
littletomatodonkey's avatar
littletomatodonkey committed
263
264
265
</div>


zhoujun's avatar
zhoujun committed
266
### 2.3 Notes
littletomatodonkey's avatar
littletomatodonkey committed
267

littletomatodonkey's avatar
littletomatodonkey committed
268
* Paddle2.0.0 inference model library is recommended for this toturial.