db_postprocess.py 7.99 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
"""
LDOUBLEV's avatar
LDOUBLEV committed
15
This code is refered from:
LDOUBLEV's avatar
LDOUBLEV committed
16
17
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
"""
LDOUBLEV's avatar
LDOUBLEV committed
18
19
20
21
22
23
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
WenmuZhou's avatar
WenmuZhou committed
24
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
25
26
27
28
29
30
31
32
33
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

WenmuZhou's avatar
WenmuZhou committed
34
35
36
37
38
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=2.0,
39
                 use_dilation=False,
littletomatodonkey's avatar
littletomatodonkey committed
40
                 score_mode="fast",
41
                 visual_output=False,
WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
                 **kwargs):
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
47
        self.min_size = 3
littletomatodonkey's avatar
littletomatodonkey committed
48
49
50
51
52
        self.score_mode = score_mode
        assert score_mode in [
            "slow", "fast"
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)

WenmuZhou's avatar
WenmuZhou committed
53
54
        self.dilation_kernel = None if not use_dilation else np.array(
            [[1, 1], [1, 1]])
55
        self.visual = visual_output
LDOUBLEV's avatar
LDOUBLEV committed
56
57
58
59
60
61
62
63
64
65

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

LDOUBLEV's avatar
LDOUBLEV committed
66
67
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
tink2123's avatar
tink2123 committed
68
69
70
71
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
LDOUBLEV's avatar
LDOUBLEV committed
72
73
74

        num_contours = min(len(contours), self.max_candidates)

WenmuZhou's avatar
WenmuZhou committed
75
76
        boxes = []
        scores = []
LDOUBLEV's avatar
LDOUBLEV committed
77
78
79
80
81
82
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
littletomatodonkey's avatar
littletomatodonkey committed
83
84
85
86
            if self.score_mode == "fast":
                score = self.box_score_fast(pred, points.reshape(-1, 2))
            else:
                score = self.box_score_slow(pred, contour)
LDOUBLEV's avatar
LDOUBLEV committed
87
88
89
90
91
92
93
94
95
96
97
98
99
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
WenmuZhou's avatar
WenmuZhou committed
100
101
102
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores
LDOUBLEV's avatar
LDOUBLEV committed
103

LDOUBLEV's avatar
LDOUBLEV committed
104
105
    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
littletomatodonkey's avatar
littletomatodonkey committed
137
138
139
        '''
        box_score_fast: use bbox mean score as the mean score
        '''
LDOUBLEV's avatar
LDOUBLEV committed
140
141
142
143
144
145
146
147
148
149
150
151
152
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

littletomatodonkey's avatar
littletomatodonkey committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    def box_score_slow(self, bitmap, contour):
        '''
        box_score_slow: use polyon mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        contour = contour.copy()
        contour = np.reshape(contour, (-1, 2))

        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)

        contour[:, 0] = contour[:, 0] - xmin
        contour[:, 1] = contour[:, 1] - ymin

        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

174
175
176
177
178
    def visual_output(self, pred):
        im = np.array(pred[0] * 255).astype(np.uint8)
        cv2.imwrite("db_probability_map.png", im)
        print("The probalibity map is visualized in db_probability_map.png")

WenmuZhou's avatar
WenmuZhou committed
179
180
    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
WenmuZhou's avatar
WenmuZhou committed
181
182
183
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = pred[:, 0, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
184
        segmentation = pred > self.thresh
185
186
        if self.visual:
            self.visual_output(pred)
LDOUBLEV's avatar
LDOUBLEV committed
187
188
189

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
LDOUBLEV's avatar
LDOUBLEV committed
190
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
191
192
193
194
195
196
            if self.dilation_kernel is not None:
                mask = cv2.dilate(
                    np.array(segmentation[batch_index]).astype(np.uint8),
                    self.dilation_kernel)
            else:
                mask = segmentation[batch_index]
LDOUBLEV's avatar
LDOUBLEV committed
197
            boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
LDOUBLEV's avatar
LDOUBLEV committed
198
                                                   src_w, src_h)
LDOUBLEV's avatar
LDOUBLEV committed
199

WenmuZhou's avatar
WenmuZhou committed
200
            boxes_batch.append({'points': boxes})
LDOUBLEV's avatar
LDOUBLEV committed
201
        return boxes_batch
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
202
203


LDOUBLEV's avatar
LDOUBLEV committed
204
class DistillationDBPostProcess(object):
LDOUBLEV's avatar
LDOUBLEV committed
205
206
    def __init__(self,
                 model_name=["student"],
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
207
208
                 key=None,
                 thresh=0.3,
LDOUBLEV's avatar
LDOUBLEV committed
209
                 box_thresh=0.6,
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
210
                 max_candidates=1000,
LDOUBLEV's avatar
LDOUBLEV committed
211
                 unclip_ratio=1.5,
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
212
213
214
215
216
                 use_dilation=False,
                 score_mode="fast",
                 **kwargs):
        self.model_name = model_name
        self.key = key
LDOUBLEV's avatar
LDOUBLEV committed
217
218
219
220
221
222
223
        self.post_process = DBPostProcess(
            thresh=thresh,
            box_thresh=box_thresh,
            max_candidates=max_candidates,
            unclip_ratio=unclip_ratio,
            use_dilation=use_dilation,
            score_mode=score_mode)
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
224

LDOUBLEV's avatar
LDOUBLEV committed
225
    def __call__(self, predicts, shape_list):
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
226
        results = {}
LDOUBLEV's avatar
LDOUBLEV committed
227
228
        for k in self.model_name:
            results[k] = self.post_process(predicts[k], shape_list=shape_list)
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
229
        return results