db_postprocess.py 7.65 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/post_processing/seg_detector_representer.py
"""
LDOUBLEV's avatar
LDOUBLEV committed
18
19
20
21
22
23
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
WenmuZhou's avatar
WenmuZhou committed
24
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
25
26
27
28
29
30
31
32
33
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

WenmuZhou's avatar
WenmuZhou committed
34
35
36
37
38
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=2.0,
39
                 use_dilation=False,
littletomatodonkey's avatar
littletomatodonkey committed
40
                 score_mode="fast",
WenmuZhou's avatar
WenmuZhou committed
41
42
43
44
45
                 **kwargs):
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
46
        self.min_size = 3
littletomatodonkey's avatar
littletomatodonkey committed
47
48
49
50
51
        self.score_mode = score_mode
        assert score_mode in [
            "slow", "fast"
        ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)

WenmuZhou's avatar
WenmuZhou committed
52
53
        self.dilation_kernel = None if not use_dilation else np.array(
            [[1, 1], [1, 1]])
LDOUBLEV's avatar
LDOUBLEV committed
54
55
56
57
58
59
60
61
62
63

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

LDOUBLEV's avatar
LDOUBLEV committed
64
65
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
tink2123's avatar
tink2123 committed
66
67
68
69
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
LDOUBLEV's avatar
LDOUBLEV committed
70
71
72

        num_contours = min(len(contours), self.max_candidates)

WenmuZhou's avatar
WenmuZhou committed
73
74
        boxes = []
        scores = []
LDOUBLEV's avatar
LDOUBLEV committed
75
76
77
78
79
80
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
littletomatodonkey's avatar
littletomatodonkey committed
81
82
83
84
            if self.score_mode == "fast":
                score = self.box_score_fast(pred, points.reshape(-1, 2))
            else:
                score = self.box_score_slow(pred, contour)
LDOUBLEV's avatar
LDOUBLEV committed
85
86
87
88
89
90
91
92
93
94
95
96
97
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
WenmuZhou's avatar
WenmuZhou committed
98
99
100
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores
LDOUBLEV's avatar
LDOUBLEV committed
101

LDOUBLEV's avatar
LDOUBLEV committed
102
103
    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
littletomatodonkey's avatar
littletomatodonkey committed
135
136
137
        '''
        box_score_fast: use bbox mean score as the mean score
        '''
LDOUBLEV's avatar
LDOUBLEV committed
138
139
140
141
142
143
144
145
146
147
148
149
150
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

littletomatodonkey's avatar
littletomatodonkey committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    def box_score_slow(self, bitmap, contour):
        '''
        box_score_slow: use polyon mean score as the mean score
        '''
        h, w = bitmap.shape[:2]
        contour = contour.copy()
        contour = np.reshape(contour, (-1, 2))

        xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
        xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
        ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
        ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)

        contour[:, 0] = contour[:, 0] - xmin
        contour[:, 1] = contour[:, 1] - ymin

        cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

WenmuZhou's avatar
WenmuZhou committed
172
173
    def __call__(self, outs_dict, shape_list):
        pred = outs_dict['maps']
WenmuZhou's avatar
WenmuZhou committed
174
175
176
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = pred[:, 0, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
177
178
179
180
        segmentation = pred > self.thresh

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
LDOUBLEV's avatar
LDOUBLEV committed
181
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
182
183
184
185
186
187
            if self.dilation_kernel is not None:
                mask = cv2.dilate(
                    np.array(segmentation[batch_index]).astype(np.uint8),
                    self.dilation_kernel)
            else:
                mask = segmentation[batch_index]
LDOUBLEV's avatar
LDOUBLEV committed
188
            boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
LDOUBLEV's avatar
LDOUBLEV committed
189
                                                   src_w, src_h)
LDOUBLEV's avatar
LDOUBLEV committed
190

WenmuZhou's avatar
WenmuZhou committed
191
            boxes_batch.append({'points': boxes})
LDOUBLEV's avatar
LDOUBLEV committed
192
        return boxes_batch
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
193
194


LDOUBLEV's avatar
LDOUBLEV committed
195
class DistillationDBPostProcess(object):
LDOUBLEV's avatar
LDOUBLEV committed
196
197
    def __init__(self,
                 model_name=["student"],
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
198
199
                 key=None,
                 thresh=0.3,
LDOUBLEV's avatar
LDOUBLEV committed
200
                 box_thresh=0.6,
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
201
                 max_candidates=1000,
LDOUBLEV's avatar
LDOUBLEV committed
202
                 unclip_ratio=1.5,
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
203
204
205
206
207
                 use_dilation=False,
                 score_mode="fast",
                 **kwargs):
        self.model_name = model_name
        self.key = key
LDOUBLEV's avatar
LDOUBLEV committed
208
209
210
211
212
213
214
        self.post_process = DBPostProcess(
            thresh=thresh,
            box_thresh=box_thresh,
            max_candidates=max_candidates,
            unclip_ratio=unclip_ratio,
            use_dilation=use_dilation,
            score_mode=score_mode)
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
215

LDOUBLEV's avatar
LDOUBLEV committed
216
    def __call__(self, predicts, shape_list):
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
217
        results = {}
LDOUBLEV's avatar
LDOUBLEV committed
218
219
        for k in self.model_name:
            results[k] = self.post_process(predicts[k], shape_list=shape_list)
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
220
        return results