README.md 12.3 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
# OCR Pipeline WebService

(English|[简体中文](./README_CN.md))

LDOUBLEV's avatar
LDOUBLEV committed
5
PaddleOCR provides two service deployment methods:
LDOUBLEV's avatar
LDOUBLEV committed
6
7
- Based on **PaddleHub Serving**: Code path is "`./deploy/hubserving`". Please refer to the [tutorial](../../deploy/hubserving/readme_en.md)
- Based on **PaddleServing**: Code path is "`./deploy/pdserving`". Please follow this tutorial.
LDOUBLEV's avatar
LDOUBLEV committed
8

LDOUBLEV's avatar
LDOUBLEV committed
9
10
11
12
13
14
15
16
17
18
# Service deployment based on PaddleServing  

This document will introduce how to use the [PaddleServing](https://github.com/PaddlePaddle/Serving/blob/develop/README.md) to deploy the PPOCR dynamic graph model as a pipeline online service.

Some Key Features of Paddle Serving:
- Integrate with Paddle training pipeline seamlessly, most paddle models can be deployed with one line command.
- Industrial serving features supported, such as models management, online loading, online A/B testing etc.
- Highly concurrent and efficient communication between clients and servers supported.

The introduction and tutorial of Paddle Serving service deployment framework reference [document](https://github.com/PaddlePaddle/Serving/blob/develop/README.md).
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21


## Contents
WenmuZhou's avatar
WenmuZhou committed
22
23
24
25
26
27
28
29
- [OCR Pipeline WebService](#ocr-pipeline-webservice)
- [Service deployment based on PaddleServing](#service-deployment-based-on-paddleserving)
  - [Contents](#contents)
  - [Environmental preparation](#environmental-preparation)
  - [Model conversion](#model-conversion)
  - [Paddle Serving pipeline deployment](#paddle-serving-pipeline-deployment)
  - [WINDOWS Users](#windows-users)
  - [FAQ](#faq)
LDOUBLEV's avatar
LDOUBLEV committed
30

LDOUBLEV's avatar
LDOUBLEV committed
31
<a name="environmental-preparation"></a>
LDOUBLEV's avatar
LDOUBLEV committed
32
33
## Environmental preparation

LDOUBLEV's avatar
LDOUBLEV committed
34
PaddleOCR operating environment and Paddle Serving operating environment are needed.
LDOUBLEV's avatar
LDOUBLEV committed
35

LDOUBLEV's avatar
LDOUBLEV committed
36
1. Please prepare PaddleOCR operating environment reference [link](../../doc/doc_ch/installation.md).
LDOUBLEV's avatar
LDOUBLEV committed
37
   Download the corresponding paddlepaddle whl package according to the environment, it is recommended to install version 2.2.2.
tink2123's avatar
tink2123 committed
38

LDOUBLEV's avatar
LDOUBLEV committed
39
2. The steps of PaddleServing operating environment prepare are as follows:
LDOUBLEV's avatar
LDOUBLEV committed
40

LDOUBLEV's avatar
LDOUBLEV committed
41

littletomatodonkey's avatar
littletomatodonkey committed
42
```bash
LDOUBLEV's avatar
LDOUBLEV committed
43
# Install serving which used to start the service
littletomatodonkey's avatar
littletomatodonkey committed
44
45
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.7.0.post102-py3-none-any.whl
LDOUBLEV's avatar
LDOUBLEV committed
46
47

# Install paddle-serving-server for cuda10.1
littletomatodonkey's avatar
littletomatodonkey committed
48
49
50
# wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl
# pip3 install paddle_serving_server_gpu-0.7.0.post101-py3-none-any.whl

LDOUBLEV's avatar
LDOUBLEV committed
51
# Install serving which used to start the service
littletomatodonkey's avatar
littletomatodonkey committed
52
53
54
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.7.0-cp37-none-any.whl
pip3 install paddle_serving_client-0.7.0-cp37-none-any.whl

LDOUBLEV's avatar
LDOUBLEV committed
55
# Install serving-app
littletomatodonkey's avatar
littletomatodonkey committed
56
57
58
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.7.0-py3-none-any.whl
pip3 install paddle_serving_app-0.7.0-py3-none-any.whl
```
LDOUBLEV's avatar
LDOUBLEV committed
59

littletomatodonkey's avatar
littletomatodonkey committed
60
   **note:** If you want to install the latest version of PaddleServing, refer to [link](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md).
LDOUBLEV's avatar
LDOUBLEV committed
61
62
63


<a name="model-conversion"></a>
LDOUBLEV's avatar
LDOUBLEV committed
64
65
66
## Model conversion
When using PaddleServing for service deployment, you need to convert the saved inference model into a serving model that is easy to deploy.

littletomatodonkey's avatar
littletomatodonkey committed
67
Firstly, download the [inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/README_ch.md#pp-ocr%E7%B3%BB%E5%88%97%E6%A8%A1%E5%9E%8B%E5%88%97%E8%A1%A8%E6%9B%B4%E6%96%B0%E4%B8%AD) of PPOCR
LDOUBLEV's avatar
LDOUBLEV committed
68
69
```
# Download and unzip the OCR text detection model
littletomatodonkey's avatar
littletomatodonkey committed
70
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar -O ch_PP-OCRv2_det_infer.tar && tar -xf ch_PP-OCRv2_det_infer.tar
LDOUBLEV's avatar
LDOUBLEV committed
71
# Download and unzip the OCR text recognition model
littletomatodonkey's avatar
littletomatodonkey committed
72
wget https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar -O ch_PP-OCRv2_rec_infer.tar &&  tar -xf ch_PP-OCRv2_rec_infer.tar
LDOUBLEV's avatar
LDOUBLEV committed
73
```
tink2123's avatar
add qps  
tink2123 committed
74
Then, you can use installed paddle_serving_client tool to convert inference model to mobile model.
LDOUBLEV's avatar
LDOUBLEV committed
75
```
LDOUBLEV's avatar
LDOUBLEV committed
76
#  Detection model conversion
littletomatodonkey's avatar
littletomatodonkey committed
77
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_det_infer/ \
LDOUBLEV's avatar
LDOUBLEV committed
78
79
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
tink2123's avatar
tink2123 committed
80
81
                                         --serving_server ./ppocr_det_mobile_2.0_serving/ \
                                         --serving_client ./ppocr_det_mobile_2.0_client/
LDOUBLEV's avatar
LDOUBLEV committed
82

LDOUBLEV's avatar
LDOUBLEV committed
83
#  Recognition model conversion
littletomatodonkey's avatar
littletomatodonkey committed
84
python3 -m paddle_serving_client.convert --dirname ./ch_PP-OCRv2_rec_infer/ \
LDOUBLEV's avatar
LDOUBLEV committed
85
86
                                         --model_filename inference.pdmodel          \
                                         --params_filename inference.pdiparams       \
tink2123's avatar
tink2123 committed
87
88
                                         --serving_server ./ppocr_rec_mobile_2.0_serving/  \
                                         --serving_client ./ppocr_rec_mobile_2.0_client/
LDOUBLEV's avatar
LDOUBLEV committed
89
90
91

```

tink2123's avatar
add qps  
tink2123 committed
92
After the detection model is converted, there will be additional folders of `ppocr_det_mobile_2.0_serving` and `ppocr_det_mobile_2.0_client` in the current folder, with the following format:
LDOUBLEV's avatar
LDOUBLEV committed
93
```
tink2123's avatar
tink2123 committed
94
|- ppocr_det_mobile_2.0_serving/
littletomatodonkey's avatar
littletomatodonkey committed
95
96
97
98
99
  |- __model__  
  |- __params__
  |- serving_server_conf.prototxt  
  |- serving_server_conf.stream.prototxt

tink2123's avatar
tink2123 committed
100
|- ppocr_det_mobile_2.0_client
littletomatodonkey's avatar
littletomatodonkey committed
101
102
  |- serving_client_conf.prototxt  
  |- serving_client_conf.stream.prototxt
LDOUBLEV's avatar
LDOUBLEV committed
103
104
105
106

```
The recognition model is the same.

LDOUBLEV's avatar
LDOUBLEV committed
107
<a name="paddle-serving-pipeline-deployment"></a>
LDOUBLEV's avatar
LDOUBLEV committed
108
109
110
## Paddle Serving pipeline deployment

1. Download the PaddleOCR code, if you have already downloaded it, you can skip this step.
LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
    ```
    git clone https://github.com/PaddlePaddle/PaddleOCR

    # Enter the working directory  
tink2123's avatar
tink2123 committed
115
    cd PaddleOCR/deploy/pdserving/
LDOUBLEV's avatar
LDOUBLEV committed
116
117
118
119
120
121
122
123
124
125
    ```

    The pdserver directory contains the code to start the pipeline service and send prediction requests, including:
    ```
    __init__.py
    config.yml # Start the service configuration file
    ocr_reader.py # OCR model pre-processing and post-processing code implementation
    pipeline_http_client.py # Script to send pipeline prediction request
    web_service.py # Start the script of the pipeline server
    ```
LDOUBLEV's avatar
LDOUBLEV committed
126
127

2. Run the following command to start the service.
LDOUBLEV's avatar
LDOUBLEV committed
128
129
130
131
132
133
    ```
    # Start the service and save the running log in log.txt
    python3 web_service.py &>log.txt &
    ```
    After the service is successfully started, a log similar to the following will be printed in log.txt
    ![](./imgs/start_server.png)
LDOUBLEV's avatar
LDOUBLEV committed
134
135

3. Send service request
LDOUBLEV's avatar
LDOUBLEV committed
136
137
138
139
140
    ```
    python3 pipeline_http_client.py
    ```
    After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
    ![](./imgs/results.png)  
LDOUBLEV's avatar
LDOUBLEV committed
141

tink2123's avatar
add qps  
tink2123 committed
142
143
144
145
146
147
148
149
150
151
152
153
154
    Adjust the number of concurrency in config.yml to get the largest QPS. Generally, the number of concurrent detection and recognition is 2:1

    ```
    det:
        concurrency: 8
        ...
    rec:
        concurrency: 4
        ...
    ```

    Multiple service requests can be sent at the same time if necessary.

tink2123's avatar
add qps  
tink2123 committed
155
156
    The predicted performance data will be automatically written into the `PipelineServingLogs/pipeline.tracer` file.

tink2123's avatar
add qps  
tink2123 committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    Tested on 200 real pictures, and limited the detection long side to 960. The average QPS on T4 GPU can reach around 23:

    ```

    2021-05-13 03:42:36,895 ==================== TRACER ======================
    2021-05-13 03:42:36,975 Op(rec):
    2021-05-13 03:42:36,976         in[14.472382882882883 ms]
    2021-05-13 03:42:36,976         prep[9.556855855855856 ms]
    2021-05-13 03:42:36,976         midp[59.921905405405404 ms]
    2021-05-13 03:42:36,976         postp[15.345945945945946 ms]
    2021-05-13 03:42:36,976         out[1.9921216216216215 ms]
    2021-05-13 03:42:36,976         idle[0.16254943864471572]
    2021-05-13 03:42:36,976 Op(det):
    2021-05-13 03:42:36,976         in[315.4468035714286 ms]
    2021-05-13 03:42:36,976         prep[69.5980625 ms]
    2021-05-13 03:42:36,976         midp[18.989535714285715 ms]
    2021-05-13 03:42:36,976         postp[18.857803571428573 ms]
    2021-05-13 03:42:36,977         out[3.1337544642857145 ms]
    2021-05-13 03:42:36,977         idle[0.7477961159203756]
    2021-05-13 03:42:36,977 DAGExecutor:
    2021-05-13 03:42:36,977         Query count[224]
    2021-05-13 03:42:36,977         QPS[22.4 q/s]
    2021-05-13 03:42:36,977         Succ[0.9910714285714286]
    2021-05-13 03:42:36,977         Error req[169, 170]
    2021-05-13 03:42:36,977         Latency:
    2021-05-13 03:42:36,977                 ave[535.1678348214285 ms]
    2021-05-13 03:42:36,977                 .50[172.651 ms]
    2021-05-13 03:42:36,977                 .60[187.904 ms]
    2021-05-13 03:42:36,977                 .70[245.675 ms]
    2021-05-13 03:42:36,977                 .80[526.684 ms]
    2021-05-13 03:42:36,977                 .90[854.596 ms]
    2021-05-13 03:42:36,977                 .95[1722.728 ms]
    2021-05-13 03:42:36,977                 .99[3990.292 ms]
    2021-05-13 03:42:36,978 Channel (server worker num[10]):
    2021-05-13 03:42:36,978         chl0(In: ['@DAGExecutor'], Out: ['det']) size[0/0]
    2021-05-13 03:42:36,979         chl1(In: ['det'], Out: ['rec']) size[6/0]
    2021-05-13 03:42:36,979         chl2(In: ['rec'], Out: ['@DAGExecutor']) size[0/0]
tink2123's avatar
add qps  
tink2123 committed
194
195
    ```

tink2123's avatar
tink2123 committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
## C++ Serving

Service deployment based on python obviously has the advantage of convenient secondary development. However, the real application often needs to pursue better performance. PaddleServing also provides a more performant C++ deployment version.

The C++ service deployment is the same as python in the environment setup and data preparation stages, the difference is when the service is started and the client sends requests.

| Language | Speed ​​| Secondary development | Do you need to compile |
|-----|-----|---------|------------|
| C++ | fast | Slightly difficult | Single model prediction does not need to be compiled, multi-model concatenation needs to be compiled |
| python | general | easy | single-model/multi-model no compilation required |

1. Compile Serving

   To improve predictive performance, C++ services also provide multiple model concatenation services. Unlike Python Pipeline services, multiple model concatenation requires the pre - and post-model processing code to be written on the server side, so local recompilation is required to generate serving. Specific may refer to the official document: [how to compile Serving](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_EN.md)

2. Run the following command to start the service.
    ```
    # Start the service and save the running log in log.txt
    python3 -m paddle_serving_server.serve --model ppocrv2_det_serving ppocrv2_rec_serving --op GeneralDetectionOp GeneralInferOp --port 9293 &>log.txt &
    ```
    After the service is successfully started, a log similar to the following will be printed in log.txt
    ![](./imgs/start_server.png)

3. Send service request

   Due to the need for pre and post-processing in the C++Server part, in order to speed up the input to the C++Server is only the base64 encoded string of the picture, it needs to be manually modified
   Change the feed_type field and shape field in ppocrv2_det_client/serving_client_conf.prototxt to the following:

   ```
    feed_var {
    name: "x"
    alias_name: "x"
    is_lod_tensor: false
    feed_type: 20
    shape: 1
    }
   ```

   start the client:

    ```
    python3 ocr_cpp_client.py ppocrv2_det_client ppocrv2_rec_client
    ```
    After successfully running, the predicted result of the model will be printed in the cmd window. An example of the result is:
    ![](./imgs/results.png)  

bjjwwang's avatar
win doc  
bjjwwang committed
242
243
## WINDOWS Users

WenmuZhou's avatar
WenmuZhou committed
244
Windows does not support Pipeline Serving, if we want to lauch paddle serving on Windows, we should use Web Service, for more infomation please refer to [Paddle Serving for Windows Users](https://github.com/PaddlePaddle/Serving/blob/develop/doc/Windows_Tutorial_EN.md)
bjjwwang's avatar
win doc  
bjjwwang committed
245
246


bjjwwang's avatar
bjjwwang committed
247
248
249
250
251
**WINDOWS user can only use version 0.5.0 CPU Mode**

**Prepare Stage:**

```
bjjwwang's avatar
bjjwwang committed
252
pip3 install paddle-serving-server==0.5.0
bjjwwang's avatar
bjjwwang committed
253
254
255
pip3 install paddle-serving-app==0.3.1
```

bjjwwang's avatar
win doc  
bjjwwang committed
256
257
258
259
1. Start Server

```
cd win
Thomas Young's avatar
Thomas Young committed
260
261
262
python3 ocr_web_server.py gpu(for gpu user)
or
python3 ocr_web_server.py cpu(for cpu user)
bjjwwang's avatar
win doc  
bjjwwang committed
263
264
265
266
267
268
269
```

2. Client Send Requests

```
python3 ocr_web_client.py
```
tink2123's avatar
add qps  
tink2123 committed
270

LDOUBLEV's avatar
LDOUBLEV committed
271
<a name="faq"></a>
LDOUBLEV's avatar
LDOUBLEV committed
272
## FAQ
MissPenguin's avatar
MissPenguin committed
273
**Q1**: No result return after sending the request.
LDOUBLEV's avatar
LDOUBLEV committed
274

MissPenguin's avatar
MissPenguin committed
275
**A1**: Do not set the proxy when starting the service and sending the request. You can close the proxy before starting the service and before sending the request. The command to close the proxy is:
LDOUBLEV's avatar
LDOUBLEV committed
276
277
278
279
```
unset https_proxy
unset http_proxy
```