recognition_en.md 17.1 KB
Newer Older
tink2123's avatar
tink2123 committed
1
# TEXT RECOGNITION
Khanh Tran's avatar
Khanh Tran committed
2

WenmuZhou's avatar
WenmuZhou committed
3
4
5
6
7
- [1 DATA PREPARATION](#DATA_PREPARATION)
    - [1.1 Costom Dataset](#Costom_Dataset)
    - [1.2 Dataset Download](#Dataset_download)
    - [1.3 Dictionary](#Dictionary)  
    - [1.4 Add Space Category](#Add_space_category)
WenmuZhou's avatar
WenmuZhou committed
8

WenmuZhou's avatar
WenmuZhou committed
9
10
- [2 TRAINING](#TRAINING)
    - [2.1 Data Augmentation](#Data_Augmentation)
tink2123's avatar
tink2123 committed
11
12
    - [2.2 General Training](#Training)
    - [2.3 Multi-language Training](#Multi_language)
WenmuZhou's avatar
WenmuZhou committed
13

WenmuZhou's avatar
WenmuZhou committed
14
- [3 EVALUATION](#EVALUATION)
WenmuZhou's avatar
WenmuZhou committed
15

WenmuZhou's avatar
WenmuZhou committed
16
17
- [4 PREDICTION](#PREDICTION)
    - [4.1 Training engine prediction](#Training_engine_prediction)
WenmuZhou's avatar
WenmuZhou committed
18
19

<a name="DATA_PREPARATION"></a>
tink2123's avatar
tink2123 committed
20
## 1 DATA PREPARATION
Khanh Tran's avatar
Khanh Tran committed
21
22


WenmuZhou's avatar
WenmuZhou committed
23
PaddleOCR supports two data formats:
tink2123's avatar
tink2123 committed
24
25
- `LMDB` is used to train data sets stored in lmdb format(LMDBDataSet);
- `general data` is used to train data sets stored in text files(SimpleDataSet):
Khanh Tran's avatar
Khanh Tran committed
26
27
28
29
30
31

Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
WenmuZhou's avatar
WenmuZhou committed
32
# linux and mac os
33
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
WenmuZhou's avatar
WenmuZhou committed
34
35
# windows
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
Khanh Tran's avatar
Khanh Tran committed
36
37
```

WenmuZhou's avatar
WenmuZhou committed
38
<a name="Costom_Dataset"></a>
tink2123's avatar
tink2123 committed
39
### 1.1 Costom dataset
Khanh Tran's avatar
Khanh Tran committed
40
41
42
43
44

If you want to use your own data for training, please refer to the following to organize your data.

- Training set

WenmuZhou's avatar
WenmuZhou committed
45
It is recommended to put the training images in the same folder, and use a txt file (rec_gt_train.txt) to store the image path and label. The contents of the txt file are as follows:
Khanh Tran's avatar
Khanh Tran committed
46
47
48
49
50
51

* Note: by default, the image path and image label are split with \t, if you use other methods to split, it will cause training error

```
" Image file name           Image annotation "

WenmuZhou's avatar
WenmuZhou committed
52
53
train_data/rec/train/word_001.jpg   简单可依赖
train_data/rec/train/word_002.jpg   用科技让复杂的世界更简单
WenmuZhou's avatar
WenmuZhou committed
54
...
Khanh Tran's avatar
Khanh Tran committed
55
56
57
58
59
60
```

The final training set should have the following file structure:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
61
  |-rec
WenmuZhou's avatar
WenmuZhou committed
62
63
64
65
66
67
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...
Khanh Tran's avatar
Khanh Tran committed
68
69
70
71
72
73
74
75
```

- Test set

Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a rec_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
76
  |-rec
Khanh Tran's avatar
Khanh Tran committed
77
78
79
80
81
82
83
84
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
WenmuZhou's avatar
WenmuZhou committed
85
86

<a name="Dataset_download"></a>
tink2123's avatar
tink2123 committed
87
### 1.2 Dataset download
WenmuZhou's avatar
WenmuZhou committed
88

tink2123's avatar
tink2123 committed
89
- ICDAR2015
WenmuZhou's avatar
WenmuZhou committed
90

tink2123's avatar
tink2123 committed
91
92
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads).
Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
WenmuZhou's avatar
WenmuZhou committed
93

94
95
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.

WenmuZhou's avatar
WenmuZhou committed
96
97
98
99
100
101
102
103
104
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

tink2123's avatar
tink2123 committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
PaddleOCR also provides a data format conversion script, which can convert ICDAR official website label to a data format
supported by PaddleOCR. The data conversion tool is in `ppocr/utils/gen_label.py`, here is the training set as an example:

```
# convert the official gt to rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```

The data format is as follows, (a) is the original picture, (b) is the Ground Truth text file corresponding to each picture:

![](../datasets/icdar_rec.png)


- Multilingual dataset

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) ,Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)


WenmuZhou's avatar
WenmuZhou committed
125
<a name="Dictionary"></a>
tink2123's avatar
tink2123 committed
126
### 1.3 Dictionary
Khanh Tran's avatar
Khanh Tran committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

WenmuZhou's avatar
WenmuZhou committed
143
144
PaddleOCR has built-in dictionaries, which can be used on demand.

Khanh Tran's avatar
Khanh Tran committed
145
146
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

WenmuZhou's avatar
WenmuZhou committed
147
148
149
150
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

151
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
WenmuZhou's avatar
WenmuZhou committed
152

tink2123's avatar
tink2123 committed
153
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
WenmuZhou's avatar
WenmuZhou committed
154

tink2123's avatar
tink2123 committed
155
156
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

tink2123's avatar
tink2123 committed
157
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
WenmuZhou's avatar
WenmuZhou committed
158

159

WenmuZhou's avatar
WenmuZhou committed
160
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
161
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
Khanh Tran's avatar
Khanh Tran committed
162
163
164
165


To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`.

tink2123's avatar
tink2123 committed
166
167
168
169
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

WenmuZhou's avatar
WenmuZhou committed
170
<a name="Add_space_category"></a>
tink2123's avatar
tink2123 committed
171
### 1.4 Add space category
tink2123's avatar
tink2123 committed
172

xmy0916's avatar
xmy0916 committed
173
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
tink2123's avatar
tink2123 committed
174
175
176

**Note: use_space_char only takes effect when character_type=ch**

WenmuZhou's avatar
WenmuZhou committed
177
<a name="TRAINING"></a>
tink2123's avatar
tink2123 committed
178
## 2 TRAINING
Khanh Tran's avatar
Khanh Tran committed
179

tink2123's avatar
tink2123 committed
180
<a name="Data_Augmentation"></a>
tink2123's avatar
tink2123 committed
181
### 2.1 Data Augmentation
tink2123's avatar
tink2123 committed
182
183
184
185
186
187
188
189

PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.

Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

<a name="Training"></a>
tink2123's avatar
tink2123 committed
190
### 2.2 General Training
Khanh Tran's avatar
Khanh Tran committed
191
192
193
194
195
196
197
198

PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
199
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
200
201
# Decompress model parameters
cd pretrain_models
tink2123's avatar
tink2123 committed
202
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
203
204
205
206
207
```

Start training:

```
tink2123's avatar
tink2123 committed
208
# GPU training Support single card and multi-card training
tink2123's avatar
tink2123 committed
209
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
tink2123's avatar
tink2123 committed
210
211
212
213

#specify the single card training(Long training time, not recommended)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
#specify the card number through --gpus
xmy0916's avatar
xmy0916 committed
214
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
Khanh Tran's avatar
Khanh Tran committed
215
```
tink2123's avatar
tink2123 committed
216
217


Khanh Tran's avatar
Khanh Tran committed
218
219
220
221
222
223
224
225
226
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
xmy0916's avatar
xmy0916 committed
227
228
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
229
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
WenmuZhou's avatar
WenmuZhou committed
230
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
231
232
233
234
235
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
LDOUBLEV's avatar
LDOUBLEV committed
236
237
| rec_mv3_tps_bilstm_att.yml |  CRNN |   Mobilenet_v3 |  TPS   |  BiLSTM |  att  |
| rec_r34_vd_tps_bilstm_att.yml |  CRNN |   Resnet34_vd |  TPS   |  BiLSTM |  att  |
tink2123's avatar
tink2123 committed
238
| rec_r50fpn_vd_none_srn.yml    | SRN | Resnet50_fpn_vd    | None    | rnn | srn |
Topdu's avatar
Topdu committed
239
| rec_mtb_nrtr.yml    | NRTR | nrtr_mtb    | None    | transformer encoder | transformer decoder |
andyjpaddle's avatar
andyjpaddle committed
240
| rec_r31_sar.yml               | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
Khanh Tran's avatar
Khanh Tran committed
241
242


WenmuZhou's avatar
WenmuZhou committed
243
For training Chinese data, it is recommended to use
xmy0916's avatar
xmy0916 committed
244
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
Khanh Tran's avatar
Khanh Tran committed
245
co
xmy0916's avatar
xmy0916 committed
246
Take `rec_chinese_lite_train_v2.0.yml` as an example:
Khanh Tran's avatar
Khanh Tran committed
247
248
249
```
Global:
  ...
xmy0916's avatar
xmy0916 committed
250
251
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
Khanh Tran's avatar
Khanh Tran committed
252
253
254
  # Modify character type
  character_type: ch
  ...
255
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
256
  use_space_char: True
Khanh Tran's avatar
Khanh Tran committed
257

258
259
260
261

Optimizer:
  ...
  # Add learning rate decay strategy
xmy0916's avatar
xmy0916 committed
262
263
264
265
266
267
268
269
270
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
271
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
291
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
Khanh Tran's avatar
Khanh Tran committed
307
308
309
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

WenmuZhou's avatar
WenmuZhou committed
310
<a name="Multi_language"></a>
tink2123's avatar
tink2123 committed
311
### 2.3 Multi-language Training
tink2123's avatar
tink2123 committed
312
313
314

Currently, the multi-language algorithms supported by PaddleOCR are:

tink2123's avatar
tink2123 committed
315
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language | character_type |
tink2123's avatar
tink2123 committed
316
317
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  | chinese_cht|
tink2123's avatar
tink2123 committed
318
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   | EN |
tink2123's avatar
tink2123 committed
319
320
321
322
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  french |
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   | german |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese | japan |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  | korean |
tink2123's avatar
tink2123 committed
323
324
325
326
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  | latin |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |  ar |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   | cyrillic |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  | devanagari |
tink2123's avatar
tink2123 committed
327

tink2123's avatar
tink2123 committed
328
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
WenmuZhou's avatar
WenmuZhou committed
329
330
331
332
333
334
335
336
337


If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
xmy0916's avatar
xmy0916 committed
338
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
WenmuZhou's avatar
WenmuZhou committed
339
340
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
xmy0916's avatar
xmy0916 committed
341
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
342
  use_space_char: True
xmy0916's avatar
xmy0916 committed
343

WenmuZhou's avatar
WenmuZhou committed
344
...
xmy0916's avatar
xmy0916 committed
345
346
347

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
348
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
349
350
351
352
353
354
355
356
357
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
358
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
359
360
361
362
363
364
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
WenmuZhou's avatar
WenmuZhou committed
365
```
Khanh Tran's avatar
Khanh Tran committed
366

WenmuZhou's avatar
WenmuZhou committed
367
<a name="EVALUATION"></a>
tink2123's avatar
tink2123 committed
368
## 3 EVALUATION
Khanh Tran's avatar
Khanh Tran committed
369

WenmuZhou's avatar
WenmuZhou committed
370
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
Khanh Tran's avatar
Khanh Tran committed
371
372
373

```
# GPU evaluation, Global.checkpoints is the weight to be tested
WenmuZhou's avatar
WenmuZhou committed
374
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
Khanh Tran's avatar
Khanh Tran committed
375
376
```

WenmuZhou's avatar
WenmuZhou committed
377
<a name="PREDICTION"></a>
tink2123's avatar
tink2123 committed
378
## 4 PREDICTION
Khanh Tran's avatar
Khanh Tran committed
379
380
381
382


Using the model trained by paddleocr, you can quickly get prediction through the following script.

tink2123's avatar
tink2123 committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:


According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:

```
output/rec/
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```

Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
Khanh Tran's avatar
Khanh Tran committed
404
405
406

```
# Predict English results
WenmuZhou's avatar
WenmuZhou committed
407
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
408
409
```

tink2123's avatar
tink2123 committed
410

Khanh Tran's avatar
Khanh Tran committed
411
412
Input image:

413
![](../imgs_words/en/word_1.png)
Khanh Tran's avatar
Khanh Tran committed
414
415
416
417
418

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
tink2123's avatar
tink2123 committed
419
        result: ('joint', 0.9998967)
Khanh Tran's avatar
Khanh Tran committed
420
421
```

xmy0916's avatar
xmy0916 committed
422
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
Khanh Tran's avatar
Khanh Tran committed
423
424
425

```
# Predict Chinese results
WenmuZhou's avatar
WenmuZhou committed
426
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
427
428
429
430
```

Input image:

431
![](../imgs_words/ch/word_1.jpg)
Khanh Tran's avatar
Khanh Tran committed
432
433
434
435
436

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
tink2123's avatar
tink2123 committed
437
        result: ('韩国小馆', 0.997218)
Khanh Tran's avatar
Khanh Tran committed
438
```