main.cpp 11.8 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_cls.h>
WenmuZhou's avatar
WenmuZhou committed
32
#include <include/ocr_det.h>
MissPenguin's avatar
MissPenguin committed
33
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
34
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
35
36
#include <sys/stat.h>

MissPenguin's avatar
MissPenguin committed
37
#include "auto_log/autolog.h"
WenmuZhou's avatar
WenmuZhou committed
38
#include <gflags/gflags.h>
MissPenguin's avatar
MissPenguin committed
39
40
41
42

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
43
44
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
45
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
46
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
MissPenguin's avatar
MissPenguin committed
47
DEFINE_bool(benchmark, false, "Whether use benchmark.");
MissPenguin's avatar
MissPenguin committed
48
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
49
50
51
52
53
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
WenmuZhou's avatar
WenmuZhou committed
54
55
DEFINE_double(det_db_box_thresh, 0.6, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.5, "Threshold of det_db_unclip_ratio.");
MissPenguin's avatar
MissPenguin committed
56
57
58
59
60
61
62
63
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
64
DEFINE_int32(rec_batch_num, 6, "rec_batch_num.");
WenmuZhou's avatar
WenmuZhou committed
65
66
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt",
              "Path of dictionary.");
MissPenguin's avatar
MissPenguin committed
67
68
69
70
71

using namespace std;
using namespace cv;
using namespace PaddleOCR;

WenmuZhou's avatar
WenmuZhou committed
72
static bool PathExists(const std::string &path) {
MissPenguin's avatar
MissPenguin committed
73
74
75
76
77
78
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
WenmuZhou's avatar
WenmuZhou committed
79
#endif // !_WIN32
MissPenguin's avatar
MissPenguin committed
80
81
}

MissPenguin's avatar
MissPenguin committed
82
int main_det(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  std::vector<double> time_info = {0, 0, 0};
  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                 FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                 FLAGS_use_polygon_score, FLAGS_visualize, FLAGS_use_tensorrt,
                 FLAGS_precision);

  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    //       LOG(INFO) << "The predict img: " << cv_all_img_names[i];

    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
    }
    std::vector<std::vector<std::vector<int>>> boxes;
    std::vector<double> det_times;

    det.Run(srcimg, boxes, &det_times);

    time_info[0] += det_times[0];
    time_info[1] += det_times[1];
    time_info[2] += det_times[2];

    cout << cv_all_img_names[i] << '\t';
    for (int n = 0; n < boxes.size(); n++) {
      for (int m = 0; m < boxes[n].size(); m++) {
        cout << boxes[n][m][0] << ' ' << boxes[n][m][1] << ' ';
MissPenguin's avatar
MissPenguin committed
113
114
      }
    }
WenmuZhou's avatar
WenmuZhou committed
115
    cout << endl;
MissPenguin's avatar
MissPenguin committed
116
    if (FLAGS_benchmark) {
WenmuZhou's avatar
WenmuZhou committed
117
118
119
120
121
122
123
      cout << cv_all_img_names[i] << '\t';
      for (int n = 0; n < boxes.size(); n++) {
        for (int m = 0; m < boxes[n].size(); m++) {
          cout << boxes[n][m][0] << ' ' << boxes[n][m][1] << ' ';
        }
      }
      cout << endl;
MissPenguin's avatar
MissPenguin committed
124
    }
WenmuZhou's avatar
WenmuZhou committed
125
  }
MissPenguin's avatar
MissPenguin committed
126

WenmuZhou's avatar
WenmuZhou committed
127
128
129
130
131
132
133
134
  if (FLAGS_benchmark) {
    AutoLogger autolog("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                       FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                       FLAGS_precision, time_info, cv_all_img_names.size());
    autolog.report();
  }
  return 0;
}
MissPenguin's avatar
MissPenguin committed
135

MissPenguin's avatar
MissPenguin committed
136
int main_rec(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
137
  std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
138

WenmuZhou's avatar
WenmuZhou committed
139
140
141
142
  std::string char_list_file = FLAGS_char_list_file;
  if (FLAGS_benchmark)
    char_list_file = FLAGS_char_list_file.substr(6);
  cout << "label file: " << char_list_file << endl;
MissPenguin's avatar
MissPenguin committed
143

WenmuZhou's avatar
WenmuZhou committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                     char_list_file, FLAGS_use_tensorrt, FLAGS_precision,
                     FLAGS_rec_batch_num);

  std::vector<cv::Mat> img_list;
  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    LOG(INFO) << "The predict img: " << cv_all_img_names[i];

    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
158
    }
WenmuZhou's avatar
WenmuZhou committed
159
160
161
162
163
164
165
    img_list.push_back(srcimg);
  }
  std::vector<double> rec_times;
  rec.Run(img_list, &rec_times);
  time_info[0] += rec_times[0];
  time_info[1] += rec_times[1];
  time_info[2] += rec_times[2];
MissPenguin's avatar
MissPenguin committed
166

WenmuZhou's avatar
WenmuZhou committed
167
168
169
170
171
172
173
174
175
  if (FLAGS_benchmark) {
    AutoLogger autolog("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                       FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                       FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                       time_info, cv_all_img_names.size());
    autolog.report();
  }
  return 0;
}
MissPenguin's avatar
MissPenguin committed
176

MissPenguin's avatar
MissPenguin committed
177
int main_system(std::vector<cv::String> cv_all_img_names) {
WenmuZhou's avatar
WenmuZhou committed
178
179
  std::vector<double> time_info_det = {0, 0, 0};
  std::vector<double> time_info_rec = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
180

WenmuZhou's avatar
WenmuZhou committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                 FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                 FLAGS_use_polygon_score, FLAGS_visualize, FLAGS_use_tensorrt,
                 FLAGS_precision);

  Classifier *cls = nullptr;
  if (FLAGS_use_angle_cls) {
    cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                         FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                         FLAGS_cls_thresh, FLAGS_use_tensorrt, FLAGS_precision);
  }

  std::string char_list_file = FLAGS_char_list_file;
  if (FLAGS_benchmark)
    char_list_file = FLAGS_char_list_file.substr(6);
  cout << "label file: " << char_list_file << endl;

  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_threads, FLAGS_enable_mkldnn,
                     char_list_file, FLAGS_use_tensorrt, FLAGS_precision,
                     FLAGS_rec_batch_num);

  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    LOG(INFO) << "The predict img: " << cv_all_img_names[i];
MissPenguin's avatar
MissPenguin committed
207

WenmuZhou's avatar
WenmuZhou committed
208
209
210
211
212
    cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: "
                << cv_all_img_names[i] << endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
213
    }
WenmuZhou's avatar
WenmuZhou committed
214
215
216
    std::vector<std::vector<std::vector<int>>> boxes;
    std::vector<double> det_times;
    std::vector<double> rec_times;
MissPenguin's avatar
MissPenguin committed
217

WenmuZhou's avatar
WenmuZhou committed
218
219
220
221
    det.Run(srcimg, boxes, &det_times);
    time_info_det[0] += det_times[0];
    time_info_det[1] += det_times[1];
    time_info_det[2] += det_times[2];
MissPenguin's avatar
MissPenguin committed
222

WenmuZhou's avatar
WenmuZhou committed
223
224
225
226
227
228
229
230
    std::vector<cv::Mat> img_list;
    for (int j = 0; j < boxes.size(); j++) {
      cv::Mat crop_img;
      crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
      if (cls != nullptr) {
        crop_img = cls->Run(crop_img);
      }
      img_list.push_back(crop_img);
MissPenguin's avatar
MissPenguin committed
231
    }
WenmuZhou's avatar
WenmuZhou committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

    rec.Run(img_list, &rec_times);
    time_info_rec[0] += rec_times[0];
    time_info_rec[1] += rec_times[1];
    time_info_rec[2] += rec_times[2];
  }

  if (FLAGS_benchmark) {
    AutoLogger autolog_det("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                           FLAGS_precision, time_info_det,
                           cv_all_img_names.size());
    AutoLogger autolog_rec("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                           time_info_rec, cv_all_img_names.size());
    autolog_det.report();
    std::cout << endl;
    autolog_rec.report();
  }
  return 0;
}

void check_params(char *mode) {
  if (strcmp(mode, "det") == 0) {
    if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
      std::cout << "Usage[det]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
262
    }
WenmuZhou's avatar
WenmuZhou committed
263
264
265
266
267
268
269
  }
  if (strcmp(mode, "rec") == 0) {
    if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
      std::cout << "Usage[rec]: ./ppocr "
                   "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
270
    }
WenmuZhou's avatar
WenmuZhou committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
  }
  if (strcmp(mode, "system") == 0) {
    if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() ||
         FLAGS_image_dir.empty()) ||
        (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
      std::cout << "Usage[system without angle cls]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      std::cout << "Usage[system with angle cls]: ./ppocr "
                   "--det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--use_angle_cls=true "
                << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
      exit(1);
MissPenguin's avatar
MissPenguin committed
287
    }
WenmuZhou's avatar
WenmuZhou committed
288
289
290
291
292
293
  }
  if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" &&
      FLAGS_precision != "int8") {
    cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
    exit(1);
  }
MissPenguin's avatar
MissPenguin committed
294
295
}

MissPenguin's avatar
MissPenguin committed
296
int main(int argc, char **argv) {
WenmuZhou's avatar
WenmuZhou committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
  if (argc <= 1 ||
      (strcmp(argv[1], "det") != 0 && strcmp(argv[1], "rec") != 0 &&
       strcmp(argv[1], "system") != 0)) {
    std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
    return -1;
  }
  std::cout << "mode: " << argv[1] << endl;

  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  check_params(argv[1]);

  if (!PathExists(FLAGS_image_dir)) {
    std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir
              << endl;
    exit(1);
  }

  std::vector<cv::String> cv_all_img_names;
  cv::glob(FLAGS_image_dir, cv_all_img_names);
  std::cout << "total images num: " << cv_all_img_names.size() << endl;
MissPenguin's avatar
MissPenguin committed
318

WenmuZhou's avatar
WenmuZhou committed
319
320
321
322
323
324
325
326
327
  if (strcmp(argv[1], "det") == 0) {
    return main_det(cv_all_img_names);
  }
  if (strcmp(argv[1], "rec") == 0) {
    return main_rec(cv_all_img_names);
  }
  if (strcmp(argv[1], "system") == 0) {
    return main_system(cv_all_img_names);
  }
MissPenguin's avatar
MissPenguin committed
328
}