README.md 5.94 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# PPStructure
WenmuZhou's avatar
WenmuZhou committed
2

WenmuZhou's avatar
WenmuZhou committed
3
PPStructure is an OCR toolkit for complex layout analysis. It can divide document data in the form of pictures into **text, table, title, picture and list** 5 types of areas, and extract the table area as excel
WenmuZhou's avatar
opt doc  
WenmuZhou committed
4
5
6
7
## 1. Quick start

### install

WenmuZhou's avatar
WenmuZhou committed
8
**install paddleocr**
WenmuZhou's avatar
WenmuZhou committed
9

WenmuZhou's avatar
WenmuZhou committed
10
ref to [paddleocr whl doc](../doc/doc_en/whl_en.md)
WenmuZhou's avatar
WenmuZhou committed
11

WenmuZhou's avatar
WenmuZhou committed
12
13
14
**install layoutparser**
```sh
pip3 install -U premailer https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
WenmuZhou's avatar
opt doc  
WenmuZhou committed
15
```
WenmuZhou's avatar
WenmuZhou committed
16

WenmuZhou's avatar
opt doc  
WenmuZhou committed
17
### 1.2 Use
WenmuZhou's avatar
WenmuZhou committed
18

WenmuZhou's avatar
opt doc  
WenmuZhou committed
19
#### 1.2.1 Use by command line
WenmuZhou's avatar
WenmuZhou committed
20

WenmuZhou's avatar
opt doc  
WenmuZhou committed
21
```bash
WenmuZhou's avatar
WenmuZhou committed
22
paddleocr --image_dir=../doc/table/1.png --type=structure
WenmuZhou's avatar
opt doc  
WenmuZhou committed
23
24
```

WenmuZhou's avatar
opt doc  
WenmuZhou committed
25
#### 1.2.2 Use by code
WenmuZhou's avatar
WenmuZhou committed
26
27

```python
WenmuZhou's avatar
WenmuZhou committed
28
import os
WenmuZhou's avatar
WenmuZhou committed
29
import cv2
WenmuZhou's avatar
WenmuZhou committed
30
from paddleocr import PPStructure,draw_structure_result,save_structure_res
WenmuZhou's avatar
WenmuZhou committed
31

WenmuZhou's avatar
WenmuZhou committed
32
table_engine = PPStructure(show_log=True)
WenmuZhou's avatar
WenmuZhou committed
33

WenmuZhou's avatar
WenmuZhou committed
34
save_folder = './output/table'
WenmuZhou's avatar
WenmuZhou committed
35
36
37
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
WenmuZhou's avatar
WenmuZhou committed
38
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
WenmuZhou's avatar
WenmuZhou committed
39

WenmuZhou's avatar
WenmuZhou committed
40
41
42
43
44
for line in result:
    print(line)

from PIL import Image

WenmuZhou's avatar
WenmuZhou committed
45
font_path = '../doc/fonts/simfang.ttf'
WenmuZhou's avatar
WenmuZhou committed
46
image = Image.open(img_path).convert('RGB')
WenmuZhou's avatar
WenmuZhou committed
47
im_show = draw_structure_result(image, result,font_path=font_path)
WenmuZhou's avatar
WenmuZhou committed
48
49
50
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
WenmuZhou's avatar
WenmuZhou committed
51
#### 1.2.3 返回结果说明
WenmuZhou's avatar
WenmuZhou committed
52
The return result of PPStructure is a list composed of a dict, an example is as follows
WenmuZhou's avatar
WenmuZhou committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

```shell
[
  {   'type': 'Text', 
      'bbox': [34, 432, 345, 462], 
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]], 
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
The description of each field in dict is as follows

| Parameter            | Description           | 
| --------------- | -------------|
|type|Type of image area|
|bbox|The coordinates of the image area in the original image, respectively [left upper x, left upper y, right bottom x, right bottom y]|
|res|OCR or table recognition result of image area。<br> Table: HTML string of the table; <br> OCR: A tuple containing the detection coordinates and recognition results of each single line of text|

WenmuZhou's avatar
WenmuZhou committed
71

WenmuZhou's avatar
WenmuZhou committed
72
#### 1.2.4 Parameter Description:
WenmuZhou's avatar
opt doc  
WenmuZhou committed
73
74
75
76
77
78
79
80
81
82
83
84

| Parameter            | Description                                     | Default value                                        |
| --------------- | ---------------------------------------- | ------------------------------------------- |
| output          | The path where excel and recognition results are saved                | ./output/table                              |
| table_max_len   | The long side of the image is resized in table structure model  | 488                                         |
| table_model_dir | inference model path of table structure model          | None                                        |
| table_char_type | dict path of table structure model                 | ../ppocr/utils/dict/table_structure_dict.tx |

Most of the parameters are consistent with the paddleocr whl package, see [doc of whl](../doc/doc_en/whl_en.md)

After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel, and the excel file name will be the coordinates of the table in the image.

WenmuZhou's avatar
WenmuZhou committed
85
## 2. PPStructure Pipeline
WenmuZhou's avatar
opt doc  
WenmuZhou committed
86
87

the process is as follows
WenmuZhou's avatar
WenmuZhou committed
88
![pipeline](../doc/table/pipeline_en.jpg)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
89

WenmuZhou's avatar
WenmuZhou committed
90
In PPStructure, the image will be analyzed by layoutparser first. In the layout analysis, the area in the image will be classified, including **text, title, image, list and table** 5 categories. For the first 4 types of areas, directly use the PP-OCR to complete the text detection and recognition. The table area will  be converted to an excel file of the same table style via Table OCR.
WenmuZhou's avatar
WenmuZhou committed
91

WenmuZhou's avatar
opt doc  
WenmuZhou committed
92
93
### 2.1 LayoutParser

WenmuZhou's avatar
WenmuZhou committed
94
Layout analysis divides the document data into regions, including the use of Python scripts for layout analysis tools, extraction of special category detection boxes, performance indicators, and custom training layout analysis models. For details, please refer to [document](layout/README_en.md).
WenmuZhou's avatar
opt doc  
WenmuZhou committed
95
96
97
98
99

### 2.2 Table OCR

Table OCR converts table image into excel documents, which include the detection and recognition of table text and the prediction of table structure and cell coordinates. For detailed, please refer to [document](table/README.md)

WenmuZhou's avatar
WenmuZhou committed
100
## 3. Predictive by inference engine
WenmuZhou's avatar
opt doc  
WenmuZhou committed
101
102
103
104

Use the following commands to complete the inference. 

```python
WenmuZhou's avatar
WenmuZhou committed
105
python3 table/predict_system.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
WenmuZhou's avatar
opt doc  
WenmuZhou committed
106
107
```
After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel, and the excel file name will be the coordinates of the table in the image.
WenmuZhou's avatar
WenmuZhou committed
108

WenmuZhou's avatar
WenmuZhou committed
109
**Model List**
WenmuZhou's avatar
WenmuZhou committed
110
111


WenmuZhou's avatar
opt doc  
WenmuZhou committed
112
113
114
115
116
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|en_ppocr_mobile_v2.0_table_det|Text detection in English table scene|[ch_det_mv3_db_v2.0.yml](../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| 4.7M |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) |
|en_ppocr_mobile_v2.0_table_rec|Text recognition in English table scene|[rec_chinese_lite_train_v2.0.yml](..//configs/rec/rec_mv3_none_bilstm_ctc.yml)|6.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) |
|en_ppocr_mobile_v2.0_table_structure|Table structure prediction for English table scenarios|[table_mv3.yml](../configs/table/table_mv3.yml)|18.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) |