README.md 6.15 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
# PaddleStructure

WenmuZhou's avatar
opt doc  
WenmuZhou committed
3
4
5
6
7
8
PaddleStructure is an OCR toolkit for complex layout analysis. It can divide document data in the form of pictures into **text, table, title, picture and list** 5 types of areas, and extract the table area as excel
## 1. Quick start

### install

**install layoutparser**
WenmuZhou's avatar
WenmuZhou committed
9
```sh
WenmuZhou's avatar
WenmuZhou committed
10
pip3 install -U premailer paddleocr https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
WenmuZhou's avatar
WenmuZhou committed
11
```
WenmuZhou's avatar
opt doc  
WenmuZhou committed
12
**install paddlestructure**
WenmuZhou's avatar
WenmuZhou committed
13

WenmuZhou's avatar
opt doc  
WenmuZhou committed
14
install by pypi
WenmuZhou's avatar
WenmuZhou committed
15

WenmuZhou's avatar
opt doc  
WenmuZhou committed
16
17
18
```bash
pip install paddlestructure
```
WenmuZhou's avatar
WenmuZhou committed
19

WenmuZhou's avatar
opt doc  
WenmuZhou committed
20
21
22
23
24
build own whl package and install
```bash
python3 setup.py bdist_wheel
pip3 install dist/paddlestructure-x.x.x-py3-none-any.whl # x.x.x is the version of paddlestructure
```
WenmuZhou's avatar
WenmuZhou committed
25

WenmuZhou's avatar
opt doc  
WenmuZhou committed
26
### 1.2 Use
WenmuZhou's avatar
WenmuZhou committed
27

WenmuZhou's avatar
opt doc  
WenmuZhou committed
28
#### 1.2.1 Use by command line
WenmuZhou's avatar
WenmuZhou committed
29

WenmuZhou's avatar
opt doc  
WenmuZhou committed
30
31
```bash
paddlestructure --image_dir=../doc/table/1.png
WenmuZhou's avatar
opt doc  
WenmuZhou committed
32
33
```

WenmuZhou's avatar
opt doc  
WenmuZhou committed
34
#### 1.2.2 Use by code
WenmuZhou's avatar
WenmuZhou committed
35
36

```python
WenmuZhou's avatar
WenmuZhou committed
37
import os
WenmuZhou's avatar
WenmuZhou committed
38
import cv2
WenmuZhou's avatar
WenmuZhou committed
39
from paddlestructure import PaddleStructure,draw_result,save_res
WenmuZhou's avatar
WenmuZhou committed
40

WenmuZhou's avatar
WenmuZhou committed
41
table_engine = PaddleStructure(show_log=True)
WenmuZhou's avatar
WenmuZhou committed
42

WenmuZhou's avatar
WenmuZhou committed
43
save_folder = './output/table'
WenmuZhou's avatar
WenmuZhou committed
44
45
46
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
WenmuZhou's avatar
WenmuZhou committed
47
48
save_res(result, save_folder,os.path.basename(img_path).split('.')[0])

WenmuZhou's avatar
WenmuZhou committed
49
50
51
52
53
for line in result:
    print(line)

from PIL import Image

WenmuZhou's avatar
opt doc  
WenmuZhou committed
54
font_path = '../doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
WenmuZhou's avatar
WenmuZhou committed
55
56
57
58
59
image = Image.open(img_path).convert('RGB')
im_show = draw_result(image, result,font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
WenmuZhou's avatar
WenmuZhou committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#### 1.2.3 返回结果说明
The return result of PaddleStructure is a list composed of a dict, an example is as follows

```shell
[
  {   'type': 'Text', 
      'bbox': [34, 432, 345, 462], 
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]], 
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
The description of each field in dict is as follows

| Parameter            | Description           | 
| --------------- | -------------|
|type|Type of image area|
|bbox|The coordinates of the image area in the original image, respectively [left upper x, left upper y, right bottom x, right bottom y]|
|res|OCR or table recognition result of image area。<br> Table: HTML string of the table; <br> OCR: A tuple containing the detection coordinates and recognition results of each single line of text|

WenmuZhou's avatar
WenmuZhou committed
80

WenmuZhou's avatar
WenmuZhou committed
81
#### 1.2.4 Parameter Description:
WenmuZhou's avatar
opt doc  
WenmuZhou committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

| Parameter            | Description                                     | Default value                                        |
| --------------- | ---------------------------------------- | ------------------------------------------- |
| output          | The path where excel and recognition results are saved                | ./output/table                              |
| table_max_len   | The long side of the image is resized in table structure model  | 488                                         |
| table_model_dir | inference model path of table structure model          | None                                        |
| table_char_type | dict path of table structure model                 | ../ppocr/utils/dict/table_structure_dict.tx |

Most of the parameters are consistent with the paddleocr whl package, see [doc of whl](../doc/doc_en/whl_en.md)

After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel, and the excel file name will be the coordinates of the table in the image.

## 2. PaddleStructure Pipeline

the process is as follows
WenmuZhou's avatar
WenmuZhou committed
97
![pipeline](../doc/table/pipeline_en.jpg)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
98
99

In PaddleStructure, the image will be analyzed by layoutparser first. In the layout analysis, the area in the image will be classified, including **text, title, image, list and table** 5 categories. For the first 4 types of areas, directly use the PP-OCR to complete the text detection and recognition. The table area will  be converted to an excel file of the same table style via Table OCR.
WenmuZhou's avatar
WenmuZhou committed
100

WenmuZhou's avatar
opt doc  
WenmuZhou committed
101
102
### 2.1 LayoutParser

WenmuZhou's avatar
WenmuZhou committed
103
Layout analysis divides the document data into regions, including the use of Python scripts for layout analysis tools, extraction of special category detection boxes, performance indicators, and custom training layout analysis models. For details, please refer to [document](layout/README_en.md).
WenmuZhou's avatar
opt doc  
WenmuZhou committed
104
105
106
107
108

### 2.2 Table OCR

Table OCR converts table image into excel documents, which include the detection and recognition of table text and the prediction of table structure and cell coordinates. For detailed, please refer to [document](table/README.md)

WenmuZhou's avatar
WenmuZhou committed
109
## 3. Predictive by inference engine
WenmuZhou's avatar
opt doc  
WenmuZhou committed
110
111
112
113

Use the following commands to complete the inference. 

```python
WenmuZhou's avatar
WenmuZhou committed
114
python3 table/predict_system.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
WenmuZhou's avatar
opt doc  
WenmuZhou committed
115
116
```
After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel, and the excel file name will be the coordinates of the table in the image.
WenmuZhou's avatar
WenmuZhou committed
117

WenmuZhou's avatar
WenmuZhou committed
118
**Model List**
WenmuZhou's avatar
WenmuZhou committed
119
120


WenmuZhou's avatar
opt doc  
WenmuZhou committed
121
122
123
124
125
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|en_ppocr_mobile_v2.0_table_det|Text detection in English table scene|[ch_det_mv3_db_v2.0.yml](../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| 4.7M |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) |
|en_ppocr_mobile_v2.0_table_rec|Text recognition in English table scene|[rec_chinese_lite_train_v2.0.yml](..//configs/rec/rec_mv3_none_bilstm_ctc.yml)|6.9M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) |
|en_ppocr_mobile_v2.0_table_structure|Table structure prediction for English table scenarios|[table_mv3.yml](../configs/table/table_mv3.yml)|18.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) |