db_fpn.py 12 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
LDOUBLEV's avatar
LDOUBLEV committed
23
import os
LDOUBLEV's avatar
fix det  
LDOUBLEV committed
24
25
import sys

LDOUBLEV's avatar
fix  
LDOUBLEV committed
26
27
28
29
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))

LDOUBLEV's avatar
LDOUBLEV committed
30
31
32
from ppocr.modeling.backbones.det_mobilenet_v3 import SEModule


LDOUBLEV's avatar
LDOUBLEV committed
33
class DSConv(nn.Layer):
LDOUBLEV's avatar
LDOUBLEV committed
34
35
36
37
38
39
40
41
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 padding,
                 stride=1,
                 groups=None,
                 if_act=True,
LDOUBLEV's avatar
LDOUBLEV committed
42
43
                 act="relu",
                 **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
44
        super(DSConv, self).__init__()
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        if groups == None:
            groups = in_channels
        self.if_act = if_act
        self.act = act
        self.conv1 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=groups,
            bias_attr=False)

        self.bn1 = nn.BatchNorm(num_channels=in_channels, act=None)

        self.conv2 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=int(in_channels * 4),
            kernel_size=1,
            stride=1,
            bias_attr=False)

        self.bn2 = nn.BatchNorm(num_channels=int(in_channels * 4), act=None)

        self.conv3 = nn.Conv2D(
            in_channels=int(in_channels * 4),
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
            bias_attr=False)
        self._c = [in_channels, out_channels]
        if in_channels != out_channels:
            self.conv_end = nn.Conv2D(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1,
                stride=1,
                bias_attr=False)

    def forward(self, inputs):

        x = self.conv1(inputs)
        x = self.bn1(x)

        x = self.conv2(x)
        x = self.bn2(x)
        if self.if_act:
            if self.act == "relu":
                x = F.relu(x)
            elif self.act == "hardswish":
                x = F.hardswish(x)
            else:
                print("The activation function({}) is selected incorrectly.".
                      format(self.act))
                exit()

        x = self.conv3(x)
        if self._c[0] != self._c[1]:
            x = x + self.conv_end(inputs)
        return x
WenmuZhou's avatar
WenmuZhou committed
105
106


dyning's avatar
dyning committed
107
class DBFPN(nn.Layer):
WenmuZhou's avatar
WenmuZhou committed
108
    def __init__(self, in_channels, out_channels, **kwargs):
dyning's avatar
dyning committed
109
        super(DBFPN, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
110
        self.out_channels = out_channels
111
        weight_attr = paddle.nn.initializer.KaimingUniform()
WenmuZhou's avatar
WenmuZhou committed
112

dyning's avatar
dyning committed
113
        self.in2_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
114
115
116
            in_channels=in_channels[0],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
117
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
118
            bias_attr=False)
dyning's avatar
dyning committed
119
        self.in3_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
120
121
122
            in_channels=in_channels[1],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
123
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
124
            bias_attr=False)
dyning's avatar
dyning committed
125
        self.in4_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
126
127
128
            in_channels=in_channels[2],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
129
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
130
            bias_attr=False)
dyning's avatar
dyning committed
131
        self.in5_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
132
133
134
            in_channels=in_channels[3],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
135
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
136
            bias_attr=False)
dyning's avatar
dyning committed
137
        self.p5_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
138
139
140
141
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
142
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
143
            bias_attr=False)
dyning's avatar
dyning committed
144
        self.p4_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
145
146
147
148
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
149
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
150
            bias_attr=False)
dyning's avatar
dyning committed
151
        self.p3_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
152
153
154
155
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
156
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
157
            bias_attr=False)
dyning's avatar
dyning committed
158
        self.p2_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
159
160
161
162
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
163
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
164
165
166
167
168
169
170
171
172
173
            bias_attr=False)

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.in5_conv(c5)
        in4 = self.in4_conv(c4)
        in3 = self.in3_conv(c3)
        in2 = self.in2_conv(c2)

WenmuZhou's avatar
WenmuZhou committed
174
175
176
177
178
179
        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4
WenmuZhou's avatar
WenmuZhou committed
180
181
182
183
184

        p5 = self.p5_conv(in5)
        p4 = self.p4_conv(out4)
        p3 = self.p3_conv(out3)
        p2 = self.p2_conv(out2)
WenmuZhou's avatar
WenmuZhou committed
185
186
187
        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
WenmuZhou's avatar
WenmuZhou committed
188
189
190

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
LDOUBLEV's avatar
LDOUBLEV committed
191
192


LDOUBLEV's avatar
rename  
LDOUBLEV committed
193
class RSELayer(nn.Layer):
LDOUBLEV's avatar
LDOUBLEV committed
194
    def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
LDOUBLEV's avatar
rename  
LDOUBLEV committed
195
        super(RSELayer, self).__init__()
LDOUBLEV's avatar
LDOUBLEV committed
196
        weight_attr = paddle.nn.initializer.KaimingUniform()
LDOUBLEV's avatar
fix  
LDOUBLEV committed
197
        self.out_channels = out_channels
LDOUBLEV's avatar
LDOUBLEV committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        self.in_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size // 2),
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.se_block = SEModule(self.out_channels)
        self.shortcut = shortcut

    def forward(self, ins):
        x = self.in_conv(ins)
        if self.shortcut:
            out = x + self.se_block(x)
        else:
            out = self.se_block(x)
        return out


LDOUBLEV's avatar
rename  
LDOUBLEV committed
217
class RSEFPN(nn.Layer):
LDOUBLEV's avatar
fix det  
LDOUBLEV committed
218
    def __init__(self, in_channels, out_channels, shortcut=True, **kwargs):
LDOUBLEV's avatar
rename  
LDOUBLEV committed
219
        super(RSEFPN, self).__init__()
LDOUBLEV's avatar
fix det  
LDOUBLEV committed
220
        self.out_channels = out_channels
LDOUBLEV's avatar
LDOUBLEV committed
221
222
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
LDOUBLEV's avatar
LDOUBLEV committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

        for i in range(len(in_channels)):
            self.ins_conv.append(
                CALayer(
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
                CALayer(
                    out_channels,
                    out_channels // 4,
                    kernel_size=3,
                    shortcut=shortcut))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
LDOUBLEV's avatar
LDOUBLEV committed
264
265


LDOUBLEV's avatar
rename  
LDOUBLEV committed
266
class LKPAN(nn.Layer):
LDOUBLEV's avatar
LDOUBLEV committed
267
    def __init__(self, in_channels, out_channels, mode='large', **kwargs):
LDOUBLEV's avatar
rename  
LDOUBLEV committed
268
        super(LKPAN, self).__init__()
LDOUBLEV's avatar
LDOUBLEV committed
269
270
271
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

LDOUBLEV's avatar
LDOUBLEV committed
272
273
        self.ins_conv = nn.LayerList()
        self.inp_conv = nn.LayerList()
LDOUBLEV's avatar
LDOUBLEV committed
274
        # pan head
LDOUBLEV's avatar
LDOUBLEV committed
275
276
        self.pan_head_conv = nn.LayerList()
        self.pan_lat_conv = nn.LayerList()
LDOUBLEV's avatar
LDOUBLEV committed
277

LDOUBLEV's avatar
LDOUBLEV committed
278
279
280
281
282
283
284
285
286
        if mode.lower() == 'lite':
            p_layer = DSConv
        elif mode.lower() == 'large':
            p_layer = nn.Conv2D
        else:
            raise ValueError(
                "mode can only be one of ['lite', 'large'], but received {}".
                format(mode))

LDOUBLEV's avatar
LDOUBLEV committed
287
288
289
        for i in range(len(in_channels)):
            self.ins_conv.append(
                nn.Conv2D(
LDOUBLEV's avatar
LDOUBLEV committed
290
                    in_channels=in_channels[i],
LDOUBLEV's avatar
LDOUBLEV committed
291
292
293
294
295
296
                    out_channels=self.out_channels,
                    kernel_size=1,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            self.inp_conv.append(
LDOUBLEV's avatar
LDOUBLEV committed
297
                p_layer(
LDOUBLEV's avatar
LDOUBLEV committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
                    in_channels=self.out_channels,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            if i > 0:
                self.pan_head_conv.append(
                    nn.Conv2D(
                        in_channels=self.out_channels // 4,
                        out_channels=self.out_channels // 4,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        weight_attr=ParamAttr(initializer=weight_attr),
                        bias_attr=False))
            self.pan_lat_conv.append(
LDOUBLEV's avatar
LDOUBLEV committed
316
                p_layer(
LDOUBLEV's avatar
LDOUBLEV committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
                    in_channels=self.out_channels // 4,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
LDOUBLEV's avatar
LDOUBLEV committed
334
335
336
337
338
339
340
341
342
343
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        f5 = self.inp_conv[3](in5)
        f4 = self.inp_conv[2](out4)
        f3 = self.inp_conv[1](out3)
        f2 = self.inp_conv[0](out2)

LDOUBLEV's avatar
LDOUBLEV committed
344
345
346
        pan3 = f3 + self.pan_head_conv[0](f2)
        pan4 = f4 + self.pan_head_conv[1](pan3)
        pan5 = f5 + self.pan_head_conv[2](pan4)
LDOUBLEV's avatar
LDOUBLEV committed
347

LDOUBLEV's avatar
LDOUBLEV committed
348
349
350
351
        p2 = self.pan_lat_conv[0](f2)
        p3 = self.pan_lat_conv[1](pan3)
        p4 = self.pan_lat_conv[2](pan4)
        p5 = self.pan_lat_conv[3](pan5)
LDOUBLEV's avatar
LDOUBLEV committed
352
353
354
355
356
357
358

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse