db_fpn.py 9.18 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
LDOUBLEV's avatar
fix  
LDOUBLEV committed
23
24
25
26
27

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../../..')))

LDOUBLEV's avatar
LDOUBLEV committed
28
from ppocr.backbones.det_mobilenet_v3 import SEModule, ConvBNLayer
WenmuZhou's avatar
WenmuZhou committed
29
30


dyning's avatar
dyning committed
31
class DBFPN(nn.Layer):
WenmuZhou's avatar
WenmuZhou committed
32
    def __init__(self, in_channels, out_channels, **kwargs):
dyning's avatar
dyning committed
33
        super(DBFPN, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
34
        self.out_channels = out_channels
35
        weight_attr = paddle.nn.initializer.KaimingUniform()
WenmuZhou's avatar
WenmuZhou committed
36

dyning's avatar
dyning committed
37
        self.in2_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
38
39
40
            in_channels=in_channels[0],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
41
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
42
            bias_attr=False)
dyning's avatar
dyning committed
43
        self.in3_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
44
45
46
            in_channels=in_channels[1],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
47
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
48
            bias_attr=False)
dyning's avatar
dyning committed
49
        self.in4_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
50
51
52
            in_channels=in_channels[2],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
53
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
54
            bias_attr=False)
dyning's avatar
dyning committed
55
        self.in5_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
56
57
58
            in_channels=in_channels[3],
            out_channels=self.out_channels,
            kernel_size=1,
littletomatodonkey's avatar
littletomatodonkey committed
59
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
60
            bias_attr=False)
dyning's avatar
dyning committed
61
        self.p5_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
62
63
64
65
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
66
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
67
            bias_attr=False)
dyning's avatar
dyning committed
68
        self.p4_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
69
70
71
72
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
73
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
74
            bias_attr=False)
dyning's avatar
dyning committed
75
        self.p3_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
76
77
78
79
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
80
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
81
            bias_attr=False)
dyning's avatar
dyning committed
82
        self.p2_conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
83
84
85
86
            in_channels=self.out_channels,
            out_channels=self.out_channels // 4,
            kernel_size=3,
            padding=1,
littletomatodonkey's avatar
littletomatodonkey committed
87
            weight_attr=ParamAttr(initializer=weight_attr),
WenmuZhou's avatar
WenmuZhou committed
88
89
90
91
92
93
94
95
96
97
            bias_attr=False)

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.in5_conv(c5)
        in4 = self.in4_conv(c4)
        in3 = self.in3_conv(c3)
        in2 = self.in2_conv(c2)

WenmuZhou's avatar
WenmuZhou committed
98
99
100
101
102
103
        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107
108

        p5 = self.p5_conv(in5)
        p4 = self.p4_conv(out4)
        p3 = self.p3_conv(out3)
        p2 = self.p2_conv(out2)
WenmuZhou's avatar
WenmuZhou committed
109
110
111
        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)
WenmuZhou's avatar
WenmuZhou committed
112
113
114

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
LDOUBLEV's avatar
LDOUBLEV committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186


class CALayer(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
        super(CALayer, self).__init__()
        weight_attr = paddle.nn.initializer.KaimingUniform()
        self.in_conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size // 2),
            weight_attr=ParamAttr(initializer=weight_attr),
            bias_attr=False)
        self.se_block = SEModule(self.out_channels)
        self.shortcut = shortcut

    def forward(self, ins):
        x = self.in_conv(ins)
        if self.shortcut:
            out = x + self.se_block(x)
        else:
            out = self.se_block(x)
        return out


class CAFPN(nn.Layer):
    def __init__(self, in_channels, out_channels, shortcut, **kwargs):
        super(CAFPN, self).__init__()

        self.ins_convs = []
        self.inp_convs = []

        for i in range(len(in_channels)):
            self.ins_conv.append(
                CALayer(
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
                CALayer(
                    out_channels,
                    out_channels // 4,
                    kernel_size=3,
                    shortcut=shortcut))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse
LDOUBLEV's avatar
LDOUBLEV committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268


class FEPAN(nn.Layer):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(FEPAN, self).__init__()
        self.out_channels = out_channels
        weight_attr = paddle.nn.initializer.KaimingUniform()

        self.ins_convs = []
        self.inp_convs = []
        # pan head
        self.pan_head_conv = []
        self.pan_lat_conv = []

        for i in range(len(in_channels)):
            self.ins_conv.append(
                nn.Conv2D(
                    in_channels=in_channels[0],
                    out_channels=self.out_channels,
                    kernel_size=1,
                    weight_attr=ParamAttr(initializer=weight_attr),
                    bias_attr=False))

            self.inp_conv.append(
                ConvBNLayer(
                    in_channels=self.out_channels,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4))

            if i > 0:
                self.pan_head_conv.append(
                    nn.Conv2D(
                        in_channels=self.out_channels // 4,
                        out_channels=self.out_channels // 4,
                        kernel_size=3,
                        padding=1,
                        stride=2,
                        weight_attr=ParamAttr(initializer=weight_attr),
                        bias_attr=False))
            self.pan_lat_conv.append(
                ConvBNLayer(
                    in_channels=self.out_channels // 4,
                    out_channels=self.out_channels // 4,
                    kernel_size=9,
                    padding=4))

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = in4 + F.upsample(
            in5, scale_factor=2, mode="nearest", align_mode=1)  # 1/16
        out3 = in3 + F.upsample(
            out4, scale_factor=2, mode="nearest", align_mode=1)  # 1/8
        out2 = in2 + F.upsample(
            out3, scale_factor=2, mode="nearest", align_mode=1)  # 1/4

        f5 = self.inp_conv[3](in5)
        f4 = self.inp_conv[2](out4)
        f3 = self.inp_conv[1](out3)
        f2 = self.inp_conv[0](out2)

        pan3 = f3 + self.pan_head[0](f2)
        pan4 = f4 + self.pan_head[1](pan3)
        pan5 = f5 + self.pan_head[2](pan4)

        p2 = self.pan_lat[0](f2)
        p3 = self.pan_lat[1](pan3)
        p4 = self.pan_lat[2](pan4)
        p5 = self.pan_lat[3](pan5)

        p5 = F.upsample(p5, scale_factor=8, mode="nearest", align_mode=1)
        p4 = F.upsample(p4, scale_factor=4, mode="nearest", align_mode=1)
        p3 = F.upsample(p3, scale_factor=2, mode="nearest", align_mode=1)

        fuse = paddle.concat([p5, p4, p3, p2], axis=1)
        return fuse