infer_kie.py 6.23 KB
Newer Older
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.nn.functional as F

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey committed
27
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
28
29
30
31
32
33
34
35

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
36
from ppocr.utils.save_load import load_model
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
37
import tools.program as program
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
38
import time
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
39
40
41
42
43
44
45
46
47
48
49
50


def read_class_list(filepath):
    dict = {}
    with open(filepath, "r") as f:
        lines = f.readlines()
        for line in lines:
            key, value = line.split(" ")
            dict[key] = value.rstrip()
    return dict


LDOUBLEV's avatar
LDOUBLEV committed
51
52
53
def draw_kie_result(batch, node, idx_to_cls, count):
    img = batch[6].copy()
    boxes = batch[7]
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    h, w = img.shape[:2]
    pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255
    max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1)
    node_pred_label = max_idx.numpy().tolist()
    node_pred_score = max_value.numpy().tolist()

    for i, box in enumerate(boxes):
        if i >= len(node_pred_label):
            break
        new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
                   [box[0], box[3]]]
        Pts = np.array([new_box], np.int32)
        cv2.polylines(
            img, [Pts.reshape((-1, 1, 2))],
            True,
            color=(255, 255, 0),
            thickness=1)
        x_min = int(min([point[0] for point in new_box]))
        y_min = int(min([point[1] for point in new_box]))

        pred_label = str(node_pred_label[i])
        if pred_label in idx_to_cls:
            pred_label = idx_to_cls[pred_label]
        pred_score = '{:.2f}'.format(node_pred_score[i])
        text = pred_label + '(' + pred_score + ')'
        cv2.putText(pred_img, text, (x_min * 2, y_min),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
    vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255
    vis_img[:, :w] = img
    vis_img[:, w:] = pred_img
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
84
85
    save_kie_path = os.path.dirname(config['Global'][
        'save_res_path']) + "/kie_results/"
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
    if not os.path.exists(save_kie_path):
        os.makedirs(save_kie_path)
    save_path = os.path.join(save_kie_path, str(count) + ".png")
    cv2.imwrite(save_path, vis_img)
    logger.info("The Kie Image saved in {}".format(save_path))
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def write_kie_result(fout, node, data):
    """
    Write infer result to output file, sorted by the predict label of each line.
    The format keeps the same as the input with additional score attribute.
    """
    import json
    label = data['label']
    annotations = json.loads(label)
    max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1)
    node_pred_label = max_idx.numpy().tolist()
    node_pred_score = max_value.numpy().tolist()
    res = []
    for i, label in enumerate(node_pred_label):
        pred_score = '{:.2f}'.format(node_pred_score[i])
        pred_res = {
                'label': label,
                'transcription': annotations[i]['transcription'],
                'score': pred_score,
                'points': annotations[i]['points'],
            }
        res.append(pred_res)
    res.sort(key=lambda x: x['label'])
    fout.writelines([json.dumps(res, ensure_ascii=False) + '\n'])
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
115
116
117
118
119
120

def main():
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
121
    load_model(config, model)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
122
123
124
125
126
127

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        transforms.append(op)

LDOUBLEV's avatar
LDOUBLEV committed
128
129
    data_dir = config['Eval']['dataset']['data_dir']

LDOUBLEV's avatar
add kie  
LDOUBLEV committed
130
131
132
133
134
135
136
137
138
    ops = create_operators(transforms, global_config)

    save_res_path = config['Global']['save_res_path']
    class_path = config['Global']['class_path']
    idx_to_cls = read_class_list(class_path)
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

    model.eval()
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
139
140
141

    warmup_times = 0
    count_t = []
142
    with open(save_res_path, "w") as fout:
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
143
144
        with open(config['Global']['infer_img'], "rb") as f:
            lines = f.readlines()
LDOUBLEV's avatar
LDOUBLEV committed
145
            for index, data_line in enumerate(lines):
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
146
147
                if index == 10:
                    warmup_t = time.time()
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
148
149
                data_line = data_line.decode('utf-8')
                substr = data_line.strip("\n").split("\t")
LDOUBLEV's avatar
LDOUBLEV committed
150
                img_path, label = data_dir + "/" + substr[0], substr[1]
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
151
152
153
154
                data = {'img_path': img_path, 'label': label}
                with open(data['img_path'], 'rb') as f:
                    img = f.read()
                    data['image'] = img
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
155
                st = time.time()
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
156
157
158
159
160
161
                batch = transform(data, ops)
                batch_pred = [0] * len(batch)
                for i in range(len(batch)):
                    batch_pred[i] = paddle.to_tensor(
                        np.expand_dims(
                            batch[i], axis=0))
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
162
                st = time.time()
LDOUBLEV's avatar
LDOUBLEV committed
163
                node, edge = model(batch_pred)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
164
                node = F.softmax(node, -1)
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
165
                count_t.append(time.time() - st)
LDOUBLEV's avatar
LDOUBLEV committed
166
                draw_kie_result(batch, node, idx_to_cls, index)
167
168
                write_kie_result(fout, node, data)
        fout.close()
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
169
    logger.info("success!")
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
170
171
    logger.info("It took {} s for predict {} images.".format(
        np.sum(count_t), len(count_t)))
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
172
    ips = len(count_t[warmup_times:]) / np.sum(count_t[warmup_times:])
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
173
    logger.info("The ips is {} images/s".format(ips))
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
174
175
176
177
178


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()