infer_kie.py 5.25 KB
Newer Older
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.nn.functional as F

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
36
from ppocr.utils.save_load import load_model
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
37
import tools.program as program
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
38
import time
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
39
40
41
42
43
44
45
46
47
48
49
50


def read_class_list(filepath):
    dict = {}
    with open(filepath, "r") as f:
        lines = f.readlines()
        for line in lines:
            key, value = line.split(" ")
            dict[key] = value.rstrip()
    return dict


LDOUBLEV's avatar
LDOUBLEV committed
51
52
53
def draw_kie_result(batch, node, idx_to_cls, count):
    img = batch[6].copy()
    boxes = batch[7]
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    h, w = img.shape[:2]
    pred_img = np.ones((h, w * 2, 3), dtype=np.uint8) * 255
    max_value, max_idx = paddle.max(node, -1), paddle.argmax(node, -1)
    node_pred_label = max_idx.numpy().tolist()
    node_pred_score = max_value.numpy().tolist()

    for i, box in enumerate(boxes):
        if i >= len(node_pred_label):
            break
        new_box = [[box[0], box[1]], [box[2], box[1]], [box[2], box[3]],
                   [box[0], box[3]]]
        Pts = np.array([new_box], np.int32)
        cv2.polylines(
            img, [Pts.reshape((-1, 1, 2))],
            True,
            color=(255, 255, 0),
            thickness=1)
        x_min = int(min([point[0] for point in new_box]))
        y_min = int(min([point[1] for point in new_box]))

        pred_label = str(node_pred_label[i])
        if pred_label in idx_to_cls:
            pred_label = idx_to_cls[pred_label]
        pred_score = '{:.2f}'.format(node_pred_score[i])
        text = pred_label + '(' + pred_score + ')'
        cv2.putText(pred_img, text, (x_min * 2, y_min),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 1)
    vis_img = np.ones((h, w * 3, 3), dtype=np.uint8) * 255
    vis_img[:, :w] = img
    vis_img[:, w:] = pred_img
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
84
85
    save_kie_path = os.path.dirname(config['Global'][
        'save_res_path']) + "/kie_results/"
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
    if not os.path.exists(save_kie_path):
        os.makedirs(save_kie_path)
    save_path = os.path.join(save_kie_path, str(count) + ".png")
    cv2.imwrite(save_path, vis_img)
    logger.info("The Kie Image saved in {}".format(save_path))
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
91
92
93
94
95
96
97


def main():
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
98
    load_model(config, model)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
99
100
101
102
103
104

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        transforms.append(op)

LDOUBLEV's avatar
LDOUBLEV committed
105
106
    data_dir = config['Eval']['dataset']['data_dir']

LDOUBLEV's avatar
add kie  
LDOUBLEV committed
107
108
109
110
111
112
113
114
115
    ops = create_operators(transforms, global_config)

    save_res_path = config['Global']['save_res_path']
    class_path = config['Global']['class_path']
    idx_to_cls = read_class_list(class_path)
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

    model.eval()
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
116
117
118

    warmup_times = 0
    count_t = []
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
119
120
121
    with open(save_res_path, "wb") as fout:
        with open(config['Global']['infer_img'], "rb") as f:
            lines = f.readlines()
LDOUBLEV's avatar
LDOUBLEV committed
122
            for index, data_line in enumerate(lines):
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
123
124
                if index == 10:
                    warmup_t = time.time()
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
125
126
                data_line = data_line.decode('utf-8')
                substr = data_line.strip("\n").split("\t")
LDOUBLEV's avatar
LDOUBLEV committed
127
                img_path, label = data_dir + "/" + substr[0], substr[1]
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
128
129
130
131
                data = {'img_path': img_path, 'label': label}
                with open(data['img_path'], 'rb') as f:
                    img = f.read()
                    data['image'] = img
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
132
                st = time.time()
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
133
134
135
136
137
138
                batch = transform(data, ops)
                batch_pred = [0] * len(batch)
                for i in range(len(batch)):
                    batch_pred[i] = paddle.to_tensor(
                        np.expand_dims(
                            batch[i], axis=0))
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
139
                st = time.time()
LDOUBLEV's avatar
LDOUBLEV committed
140
                node, edge = model(batch_pred)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
141
                node = F.softmax(node, -1)
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
142
                count_t.append(time.time() - st)
LDOUBLEV's avatar
LDOUBLEV committed
143
                draw_kie_result(batch, node, idx_to_cls, index)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
144
    logger.info("success!")
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
145
146
    logger.info("It took {} s for predict {} images.".format(
        np.sum(count_t), len(count_t)))
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
147
    ips = len(count_t[warmup_times:]) / np.sum(count_t[warmup_times:])
LDOUBLEV's avatar
add ips  
LDOUBLEV committed
148
    logger.info("The ips is {} images/s".format(ips))
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
149
150
151
152
153


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()