vqa_layoutlm.py 5.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from paddle import nn

from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification
WenmuZhou's avatar
WenmuZhou committed
24
from paddlenlp.transformers import LayoutLMv2Model, LayoutLMv2ForTokenClassification, LayoutLMv2ForRelationExtraction
25
26
27

__all__ = ["LayoutXLMForSer", 'LayoutLMForSer']

WenmuZhou's avatar
WenmuZhou committed
28
29
pretrained_model_dict = {
    LayoutXLMModel: 'layoutxlm-base-uncased',
WenmuZhou's avatar
WenmuZhou committed
30
31
    LayoutLMModel: 'layoutlm-base-uncased',
    LayoutLMv2Model: 'layoutlmv2-base-uncased'
WenmuZhou's avatar
WenmuZhou committed
32
33
}

34
35
36
37
38
39

class NLPBaseModel(nn.Layer):
    def __init__(self,
                 base_model_class,
                 model_class,
                 type='ser',
WenmuZhou's avatar
WenmuZhou committed
40
                 pretrained=True,
41
42
43
44
45
46
                 checkpoints=None,
                 **kwargs):
        super(NLPBaseModel, self).__init__()
        if checkpoints is not None:
            self.model = model_class.from_pretrained(checkpoints)
        else:
WenmuZhou's avatar
WenmuZhou committed
47
48
49
50
51
52
53
54
            pretrained_model_name = pretrained_model_dict[base_model_class]
            if pretrained:
                base_model = base_model_class.from_pretrained(
                    pretrained_model_name)
            else:
                base_model = base_model_class(
                    **base_model_class.pretrained_init_configuration[
                        pretrained_model_name])
55
56
57
58
59
60
61
62
            if type == 'ser':
                self.model = model_class(
                    base_model, num_classes=kwargs['num_classes'], dropout=None)
            else:
                self.model = model_class(base_model, dropout=None)
        self.out_channels = 1


WenmuZhou's avatar
WenmuZhou committed
63
class LayoutLMForSer(NLPBaseModel):
WenmuZhou's avatar
WenmuZhou committed
64
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
65
                 **kwargs):
WenmuZhou's avatar
WenmuZhou committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        super(LayoutLMForSer, self).__init__(
            LayoutLMModel,
            LayoutLMForTokenClassification,
            'ser',
            pretrained,
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
            output_hidden_states=False)
        return x


class LayoutLMv2ForSer(NLPBaseModel):
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
                 **kwargs):
        super(LayoutLMv2ForSer, self).__init__(
            LayoutLMv2Model,
            LayoutLMv2ForTokenClassification,
91
            'ser',
WenmuZhou's avatar
WenmuZhou committed
92
            pretrained,
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
            image=x[3],
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
            head_mask=None,
            labels=None)
        return x[0]


WenmuZhou's avatar
WenmuZhou committed
109
class LayoutXLMForSer(NLPBaseModel):
WenmuZhou's avatar
WenmuZhou committed
110
    def __init__(self, num_classes, pretrained=True, checkpoints=None,
111
                 **kwargs):
WenmuZhou's avatar
WenmuZhou committed
112
113
114
        super(LayoutXLMForSer, self).__init__(
            LayoutXLMModel,
            LayoutXLMForTokenClassification,
115
            'ser',
WenmuZhou's avatar
WenmuZhou committed
116
            pretrained,
117
118
119
120
121
122
123
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
WenmuZhou's avatar
WenmuZhou committed
124
            image=x[3],
125
126
127
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
WenmuZhou's avatar
WenmuZhou committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            head_mask=None,
            labels=None)
        return x[0]


class LayoutLMv2ForRe(NLPBaseModel):
    def __init__(self, pretrained=True, checkpoints=None, **kwargs):
        super(LayoutLMv2ForRe, self).__init__(LayoutLMv2Model,
                                              LayoutLMv2ForRelationExtraction,
                                              're', pretrained, checkpoints)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[1],
            labels=None,
            image=x[2],
            attention_mask=x[3],
            token_type_ids=x[4],
            position_ids=None,
            head_mask=None,
            entities=x[5],
            relations=x[6])
151
152
153
154
        return x


class LayoutXLMForRe(NLPBaseModel):
WenmuZhou's avatar
WenmuZhou committed
155
156
157
158
    def __init__(self, pretrained=True, checkpoints=None, **kwargs):
        super(LayoutXLMForRe, self).__init__(LayoutXLMModel,
                                             LayoutXLMForRelationExtraction,
                                             're', pretrained, checkpoints)
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[1],
            labels=None,
            image=x[2],
            attention_mask=x[3],
            token_type_ids=x[4],
            position_ids=None,
            head_mask=None,
            entities=x[5],
            relations=x[6])
        return x