vqa_layoutlm.py 3.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
from paddle import nn

from paddlenlp.transformers import LayoutXLMModel, LayoutXLMForTokenClassification, LayoutXLMForRelationExtraction
from paddlenlp.transformers import LayoutLMModel, LayoutLMForTokenClassification

__all__ = ["LayoutXLMForSer", 'LayoutLMForSer']


class NLPBaseModel(nn.Layer):
    def __init__(self,
                 base_model_class,
                 model_class,
                 type='ser',
                 pretrained_model=None,
                 checkpoints=None,
                 **kwargs):
        super(NLPBaseModel, self).__init__()
        assert pretrained_model is not None or checkpoints is not None, "one of pretrained_model and checkpoints must be not None"
        if checkpoints is not None:
            self.model = model_class.from_pretrained(checkpoints)
        else:
            base_model = base_model_class.from_pretrained(pretrained_model)
            if type == 'ser':
                self.model = model_class(
                    base_model, num_classes=kwargs['num_classes'], dropout=None)
            else:
                self.model = model_class(base_model, dropout=None)
        self.out_channels = 1


class LayoutXLMForSer(NLPBaseModel):
    def __init__(self,
                 num_classes,
                 pretrained_model='layoutxlm-base-uncased',
                 checkpoints=None,
                 **kwargs):
        super(LayoutXLMForSer, self).__init__(
            LayoutXLMModel,
            LayoutXLMForTokenClassification,
            'ser',
            pretrained_model,
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
            image=x[3],
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
            head_mask=None,
            labels=None)
        return x[0]


class LayoutLMForSer(NLPBaseModel):
    def __init__(self,
                 num_classes,
                 pretrained_model='layoutxlm-base-uncased',
                 checkpoints=None,
                 **kwargs):
        super(LayoutLMForSer, self).__init__(
            LayoutLMModel,
            LayoutLMForTokenClassification,
            'ser',
            pretrained_model,
            checkpoints,
            num_classes=num_classes)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[2],
            attention_mask=x[4],
            token_type_ids=x[5],
            position_ids=None,
            output_hidden_states=False)
        return x


class LayoutXLMForRe(NLPBaseModel):
    def __init__(self,
                 pretrained_model='layoutxlm-base-uncased',
                 checkpoints=None,
                 **kwargs):
        super(LayoutXLMForRe, self).__init__(
            LayoutXLMModel, LayoutXLMForRelationExtraction, 're',
            pretrained_model, checkpoints)

    def forward(self, x):
        x = self.model(
            input_ids=x[0],
            bbox=x[1],
            labels=None,
            image=x[2],
            attention_mask=x[3],
            token_type_ids=x[4],
            position_ids=None,
            head_mask=None,
            entities=x[5],
            relations=x[6])
        return x