readme_en.md 12.1 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
- [Server-side C++ Inference](#server-side-c-inference)
  - [1. Prepare the Environment](#1-prepare-the-environment)
    - [Environment](#environment)
    - [1.1 Compile OpenCV](#11-compile-opencv)
    - [1.2 Compile or Download or the Paddle Inference Library](#12-compile-or-download-or-the-paddle-inference-library)
      - [1.2.1 Direct download and installation](#121-direct-download-and-installation)
      - [1.2.2 Compile the inference source code](#122-compile-the-inference-source-code)
  - [2. Compile and Run the Demo](#2-compile-and-run-the-demo)
    - [2.1 Export the inference model](#21-export-the-inference-model)
    - [2.2 Compile PaddleOCR C++ inference demo](#22-compile-paddleocr-c-inference-demo)
    - [Run the demo](#run-the-demo)
12
13
14
15
16
17
        - [1. det+cls+rec:](#1-detclsrec)
        - [2. det+rec:](#2-detrec)
        - [3. det](#3-det)
        - [4. cls+rec:](#4-clsrec)
        - [5. rec](#5-rec)
        - [6. cls](#6-cls)
WenmuZhou's avatar
WenmuZhou committed
18
19
  - [3. FAQ](#3-faq)

20
# Server-side C++ Inference
littletomatodonkey's avatar
littletomatodonkey committed
21

fanruinet's avatar
fanruinet committed
22
23
24
This chapter introduces the C++ deployment steps of the PaddleOCR model. The corresponding Python predictive deployment method refers to [document](../../doc/doc_ch/inference.md).
C++ is better than python in terms of performance. Therefore, in CPU and GPU deployment scenarios, C++ deployment is mostly used.
This section will introduce how to configure the C++ environment and deploy PaddleOCR in Linux (CPU\GPU) environment. For Windows deployment please refer to [Windows](./docs/windows_vs2019_build.md) compilation guidelines.
littletomatodonkey's avatar
littletomatodonkey committed
25
26


27
## 1. Prepare the Environment
littletomatodonkey's avatar
littletomatodonkey committed
28
29
30
31

### Environment

- Linux, docker is recommended.
WenmuZhou's avatar
WenmuZhou committed
32
- Windows.
littletomatodonkey's avatar
littletomatodonkey committed
33
34


35
### 1.1 Compile OpenCV
littletomatodonkey's avatar
littletomatodonkey committed
36

fanruinet's avatar
fanruinet committed
37
* First of all, you need to download the source code compiled package in the Linux environment from the OpenCV official website. Taking OpenCV 3.4.7 as an example, the download command is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
38

littletomatodonkey's avatar
littletomatodonkey committed
39
```bash
WenmuZhou's avatar
WenmuZhou committed
40
cd deploy/cpp_infer
littletomatodonkey's avatar
littletomatodonkey committed
41
42
wget https://paddleocr.bj.bcebos.com/libs/opencv/opencv-3.4.7.tar.gz
tar -xf opencv-3.4.7.tar.gz
littletomatodonkey's avatar
littletomatodonkey committed
43
44
```

fanruinet's avatar
fanruinet committed
45
Finally, you will see the folder of `opencv-3.4.7/` in the current directory.
littletomatodonkey's avatar
littletomatodonkey committed
46

fanruinet's avatar
fanruinet committed
47
* Compile OpenCV, the OpenCV source path (`root_path`) and installation path (`install_path`) should be set by yourself. Enter the OpenCV source code path and compile it in the following way.
littletomatodonkey's avatar
littletomatodonkey committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79


```shell
root_path=your_opencv_root_path
install_path=${root_path}/opencv3

rm -rf build
mkdir build
cd build

cmake .. \
    -DCMAKE_INSTALL_PREFIX=${install_path} \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_SHARED_LIBS=OFF \
    -DWITH_IPP=OFF \
    -DBUILD_IPP_IW=OFF \
    -DWITH_LAPACK=OFF \
    -DWITH_EIGEN=OFF \
    -DCMAKE_INSTALL_LIBDIR=lib64 \
    -DWITH_ZLIB=ON \
    -DBUILD_ZLIB=ON \
    -DWITH_JPEG=ON \
    -DBUILD_JPEG=ON \
    -DWITH_PNG=ON \
    -DBUILD_PNG=ON \
    -DWITH_TIFF=ON \
    -DBUILD_TIFF=ON

make -j
make install
```

fanruinet's avatar
fanruinet committed
80
In the above commands, `root_path` is the downloaded OpenCV source code path, and `install_path` is the installation path of OpenCV. After `make install` is completed, the OpenCV header file and library file will be generated in this folder for later OCR source code compilation.
littletomatodonkey's avatar
littletomatodonkey committed
81
82
83



fanruinet's avatar
fanruinet committed
84
The final file structure under the OpenCV installation path is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
85
86
87
88
89
90
91
92
93
94

```
opencv3/
|-- bin
|-- include
|-- lib
|-- lib64
|-- share
```

95
### 1.2 Compile or Download or the Paddle Inference Library
littletomatodonkey's avatar
littletomatodonkey committed
96
97
98

* There are 2 ways to obtain the Paddle inference library, described in detail below.

littletomatodonkey's avatar
littletomatodonkey committed
99
#### 1.2.1 Direct download and installation
littletomatodonkey's avatar
littletomatodonkey committed
100

WenmuZhou's avatar
WenmuZhou committed
101
[Paddle inference library official website](https://paddleinference.paddlepaddle.org.cn/user_guides/download_lib.html#linux). You can review and select the appropriate version of the inference library on the official website.
littletomatodonkey's avatar
littletomatodonkey committed
102
103


fanruinet's avatar
fanruinet committed
104
* After downloading, use the following command to extract files.
littletomatodonkey's avatar
littletomatodonkey committed
105
106
107
108
109

```
tar -xf paddle_inference.tgz
```

fanruinet's avatar
fanruinet committed
110
Finally you will see the the folder of `paddle_inference/` in the current path.
littletomatodonkey's avatar
littletomatodonkey committed
111

fanruinet's avatar
fanruinet committed
112
113
114
#### 1.2.2 Compile the inference source code
* If you want to get the latest Paddle inference library features, you can download the latest code from Paddle GitHub repository and compile the inference library from the source code. It is recommended to download the inference library with paddle version greater than or equal to 2.0.1.
* You can refer to [Paddle inference library] (https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html) to get the Paddle source code from GitHub, and then compile To generate the latest inference library. The method of using git to access the code is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
115
116
117
118


```shell
git clone https://github.com/PaddlePaddle/Paddle.git
LDOUBLEV's avatar
LDOUBLEV committed
119
git checkout develop
littletomatodonkey's avatar
littletomatodonkey committed
120
121
```

fanruinet's avatar
fanruinet committed
122
* Enter the Paddle directory and run the following commands to compile the paddle inference library.
littletomatodonkey's avatar
littletomatodonkey committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

```shell
rm -rf build
mkdir build
cd build

cmake  .. \
    -DWITH_CONTRIB=OFF \
    -DWITH_MKL=ON \
    -DWITH_MKLDNN=ON  \
    -DWITH_TESTING=OFF \
    -DCMAKE_BUILD_TYPE=Release \
    -DWITH_INFERENCE_API_TEST=OFF \
    -DON_INFER=ON \
    -DWITH_PYTHON=ON
make -j
make inference_lib_dist
```

LDOUBLEV's avatar
LDOUBLEV committed
142
For more compilation parameter options, please refer to the [document](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0/guides/05_inference_deployment/inference/build_and_install_lib_cn.html#congyuanmabianyi).
littletomatodonkey's avatar
littletomatodonkey committed
143
144


LDOUBLEV's avatar
LDOUBLEV committed
145
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
littletomatodonkey's avatar
littletomatodonkey committed
146
147

```
LDOUBLEV's avatar
LDOUBLEV committed
148
build/paddle_inference_install_dir/
littletomatodonkey's avatar
littletomatodonkey committed
149
150
151
152
153
154
|-- CMakeCache.txt
|-- paddle
|-- third_party
|-- version.txt
```

fanruinet's avatar
fanruinet committed
155
`paddle` is the Paddle library required for C++ prediction later, and `version.txt` contains the version information of the current inference library.
littletomatodonkey's avatar
littletomatodonkey committed
156
157


158
## 2. Compile and Run the Demo
littletomatodonkey's avatar
littletomatodonkey committed
159
160
161

### 2.1 Export the inference model

fanruinet's avatar
fanruinet committed
162
* You can refer to [Model inference](../../doc/doc_ch/inference.md) and export the inference model. After the model is exported, assuming it is placed in the `inference` directory, the directory structure is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
163
164
165
166

```
inference/
|-- det_db
MissPenguin's avatar
MissPenguin committed
167
168
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey committed
169
|-- rec_rcnn
MissPenguin's avatar
MissPenguin committed
170
171
|   |--inference.pdiparams
|   |--inference.pdmodel
172
173
174
|-- cls
|   |--inference.pdiparams
|   |--inference.pdmodel
littletomatodonkey's avatar
littletomatodonkey committed
175
176
177
178
179
180
181
182
183
```


### 2.2 Compile PaddleOCR C++ inference demo


* The compilation commands are as follows. The addresses of Paddle C++ inference library, opencv and other Dependencies need to be replaced with the actual addresses on your own machines.

```shell
MissPenguin's avatar
MissPenguin committed
184
sh tools/build.sh
littletomatodonkey's avatar
littletomatodonkey committed
185
186
```

MissPenguin's avatar
MissPenguin committed
187
Specifically, you should modify the paths in `tools/build.sh`. The related content is as follows.
littletomatodonkey's avatar
littletomatodonkey committed
188
189
190
191
192
193
194
195

```shell
OPENCV_DIR=your_opencv_dir
LIB_DIR=your_paddle_inference_dir
CUDA_LIB_DIR=your_cuda_lib_dir
CUDNN_LIB_DIR=your_cudnn_lib_dir
```

fanruinet's avatar
fanruinet committed
196
`OPENCV_DIR` is the OpenCV installation path; `LIB_DIR` is the download (`paddle_inference` folder)
LDOUBLEV's avatar
LDOUBLEV committed
197
or the generated Paddle inference library path (`build/paddle_inference_install_dir` folder);
fanruinet's avatar
fanruinet committed
198
`CUDA_LIB_DIR` is the CUDA library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cuDNN library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
littletomatodonkey's avatar
littletomatodonkey committed
199
200


MissPenguin's avatar
MissPenguin committed
201
* After the compilation is completed, an executable file named `ppocr` will be generated in the `build` folder.
littletomatodonkey's avatar
littletomatodonkey committed
202
203
204


### Run the demo
fanruinet's avatar
fanruinet committed
205
Execute the built executable file:
MissPenguin's avatar
MissPenguin committed
206
```shell
207
./build/ppocr [--param1] [--param2] [...]
208
```
fanruinet's avatar
fanruinet committed
209
210

Specifically,
MissPenguin's avatar
MissPenguin committed
211

212
213
214
215
216
217
218
219
220
221
222
223
224
##### 1. det+cls+rec:
```shell
./build/ppocr --det_model_dir=inference/det_db \
    --rec_model_dir=inference/rec_rcnn \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs/12.jpg \
    --use_angle_cls=true \
    --det=true \
    --rec=true \
    --cls=true \
```

##### 2. det+rec:
littletomatodonkey's avatar
littletomatodonkey committed
225
```shell
226
227
228
229
230
231
232
./build/ppocr --det_model_dir=inference/det_db \
    --rec_model_dir=inference/rec_rcnn \
    --image_dir=../../doc/imgs/12.jpg \
    --use_angle_cls=false \
    --det=true \
    --rec=true \
    --cls=false \
littletomatodonkey's avatar
littletomatodonkey committed
233
```
234
235

##### 3. det
MissPenguin's avatar
MissPenguin committed
236
```shell
237
238
239
240
./build/ppocr --det_model_dir=inference/det_db \
    --image_dir=../../doc/imgs/12.jpg \
    --det=true \
    --rec=false
zhoujun's avatar
zhoujun committed
241
```
242
243

##### 4. cls+rec:
MissPenguin's avatar
MissPenguin committed
244
```shell
245
246
247
./build/ppocr --rec_model_dir=inference/rec_rcnn \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
MissPenguin's avatar
MissPenguin committed
248
    --use_angle_cls=true \
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    --det=false \
    --rec=true \
    --cls=true \
```

##### 5. rec
```shell
./build/ppocr --rec_model_dir=inference/rec_rcnn \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
    --use_angle_cls=false \
    --det=false \
    --rec=true \
    --cls=false \
```

##### 6. cls
```shell
./build/ppocr --cls_model_dir=inference/cls \
    --cls_model_dir=inference/cls \
    --image_dir=../../doc/imgs_words/ch/word_1.jpg \
    --use_angle_cls=true \
    --det=false \
    --rec=false \
    --cls=true \
MissPenguin's avatar
MissPenguin committed
273
274
```

fanruinet's avatar
fanruinet committed
275
More parameters are as follows,
MissPenguin's avatar
MissPenguin committed
276

fanruinet's avatar
fanruinet committed
277
- Common parameters
MissPenguin's avatar
MissPenguin committed
278

MissPenguin's avatar
MissPenguin committed
279
280
281
282
283
284
|parameter|data type|default|meaning|
| --- | --- | --- | --- |
|use_gpu|bool|false|Whether to use GPU|
|gpu_id|int|0|GPU id when use_gpu is true|
|gpu_mem|int|4000|GPU memory requested|
|cpu_math_library_num_threads|int|10|Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed|
WenmuZhou's avatar
WenmuZhou committed
285
|enable_mkldnn|bool|true|Whether to use mkdlnn library|
WenmuZhou's avatar
WenmuZhou committed
286
|output|str|./output|Path where visualization results are saved|
MissPenguin's avatar
MissPenguin committed
287

288
289
290
291
292
293
294
295
296
297

- forward

|parameter|data type|default|meaning|
| :---: | :---: | :---: | :---: |
|det|bool|true|前向是否执行文字检测|
|rec|bool|true|前向是否执行文字识别|
|cls|bool|false|前向是否执行文字方向分类|


fanruinet's avatar
fanruinet committed
298
- Detection related parameters
MissPenguin's avatar
MissPenguin committed
299
300
301

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
302
303
304
305
306
|det_model_dir|string|-|Address of detection inference model|
|max_side_len|int|960|Limit the maximum image height and width to 960|
|det_db_thresh|float|0.3|Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result|
|det_db_box_thresh|float|0.5|DB post-processing filter box threshold, if there is a missing box detected, it can be reduced as appropriate|
|det_db_unclip_ratio|float|1.6|Indicates the compactness of the text box, the smaller the value, the closer the text box to the text|
WenmuZhou's avatar
fix bug  
WenmuZhou committed
307
|det_db_score_mode|string|slow| slow: use polygon box to calculate bbox score, fast: use rectangle box to calculate. Use rectangular box to calculate faster, and polygonal box more accurate for curved text area.|
WenmuZhou's avatar
WenmuZhou committed
308
|visualize|bool|true|Whether to visualize the results,when it is set as true, the prediction results will be saved in the folder specified by the `output` field on an image with the same name as the input image.|
MissPenguin's avatar
MissPenguin committed
309

fanruinet's avatar
fanruinet committed
310
- Classifier related parameters
MissPenguin's avatar
MissPenguin committed
311
312
313

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
314
315
316
|use_angle_cls|bool|false|Whether to use the direction classifier|
|cls_model_dir|string|-|Address of direction classifier inference model|
|cls_thresh|float|0.9|Score threshold of the  direction classifier|
317
|cls_batch_num|int|1|batch size of classifier|
MissPenguin's avatar
MissPenguin committed
318

fanruinet's avatar
fanruinet committed
319
- Recognition related parameters
MissPenguin's avatar
MissPenguin committed
320
321
322

|parameter|data type|default|meaning|
| --- | --- | --- | --- |
MissPenguin's avatar
MissPenguin committed
323
|rec_model_dir|string|-|Address of recognition inference model|
WenmuZhou's avatar
WenmuZhou committed
324
|rec_char_dict_path|string|../../ppocr/utils/ppocr_keys_v1.txt|dictionary file|
325
|rec_batch_num|int|6|batch size of recognition|
MissPenguin's avatar
MissPenguin committed
326

WenmuZhou's avatar
WenmuZhou committed
327
* Multi-language inference is also supported in PaddleOCR, you can refer to [recognition tutorial](../../doc/doc_en/recognition_en.md) for more supported languages and models in PaddleOCR. Specifically, if you want to infer using multi-language models, you just need to modify values of `rec_char_dict_path` and `rec_model_dir`.
zhoujun's avatar
zhoujun committed
328
329


littletomatodonkey's avatar
littletomatodonkey committed
330
331
The detection results will be shown on the screen, which is as follows.

332
333
334
335
336
337
338
339
340
```bash
predict img: ../../doc/imgs/12.jpg
../../doc/imgs/12.jpg
0       det boxes: [[79,553],[399,541],[400,573],[80,585]] rec text: 打浦路252935号 rec score: 0.933757
1       det boxes: [[31,509],[510,488],[511,529],[33,549]] rec text: 绿洲仕格维花园公寓 rec score: 0.951745
2       det boxes: [[181,456],[395,448],[396,480],[182,488]] rec text: 打浦路15号 rec score: 0.91956
3       det boxes: [[43,413],[480,391],[481,428],[45,450]] rec text: 上海斯格威铂尔多大酒店 rec score: 0.915914
The detection visualized image saved in ./output//12.jpg
```
littletomatodonkey's avatar
littletomatodonkey committed
341
342


WenmuZhou's avatar
WenmuZhou committed
343
## 3. FAQ
littletomatodonkey's avatar
littletomatodonkey committed
344

WenmuZhou's avatar
WenmuZhou committed
345
 1.  Encountered the error `unable to access 'https://github.com/LDOUBLEV/AutoLog.git/': gnutls_handshake() failed: The TLS connection was non-properly terminated.`, change the github address in `deploy/cpp_infer/external-cmake/auto-log.cmake` to the https://gitee.com/Double_V/AutoLog address.