README.md 9.3 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
- [文档视觉问答(DOC-VQA)](#文档视觉问答doc-vqa)
  - [1. 简介](#1-简介)
  - [2. 性能](#2-性能)
  - [3. 效果演示](#3-效果演示)
    - [3.1 SER](#31-ser)
    - [3.2 RE](#32-re)
  - [4. 安装](#4-安装)
    - [4.1 安装依赖](#41-安装依赖)
    - [4.2 安装PaddleOCR(包含 PP-OCR 和 VQA)](#42-安装paddleocr包含-pp-ocr-和-vqa)
  - [5. 使用](#5-使用)
    - [5.1 数据和预训练模型准备](#51-数据和预训练模型准备)
    - [5.2 SER](#52-ser)
    - [5.3 RE](#53-re)
  - [6. 参考链接](#6-参考链接)


WenmuZhou's avatar
add re  
WenmuZhou committed
17
# 文档视觉问答(DOC-VQA)
littletomatodonkey's avatar
littletomatodonkey committed
18

WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
<a name="1"></a>

## 1. 简介

WenmuZhou's avatar
WenmuZhou committed
23
VQA指视觉问答,主要针对图像内容进行提问和回答,DOC-VQA是VQA任务中的一种,DOC-VQA主要针对文本图像的文字内容提出问题。
WenmuZhou's avatar
add re  
WenmuZhou committed
24
25
26
27

PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进行开发。

主要特性如下:
littletomatodonkey's avatar
littletomatodonkey committed
28
29

- 集成[LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf)模型以及PP-OCR预测引擎。
WenmuZhou's avatar
WenmuZhou committed
30
31
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取,如判断问题对(pair)。
- 支持SER任务和RE任务的自定义训练。
WenmuZhou's avatar
add re  
WenmuZhou committed
32
33
- 支持OCR+SER的端到端系统预测与评估。
- 支持OCR+SER+RE的端到端系统预测。
littletomatodonkey's avatar
littletomatodonkey committed
34
35
36
37
38


本项目是 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/pdf/2104.08836.pdf) 在 Paddle 2.2上的开源实现,
包含了在 [XFUND数据集](https://github.com/doc-analysis/XFUND) 上的微调代码。

WenmuZhou's avatar
WenmuZhou committed
39
40
41
<a name="2"></a>

## 2. 性能
WenmuZhou's avatar
add re  
WenmuZhou committed
42

WenmuZhou's avatar
WenmuZhou committed
43
我们在 [XFUN](https://github.com/doc-analysis/XFUND) 的中文数据集上对算法进行了评估,性能如下
WenmuZhou's avatar
add re  
WenmuZhou committed
44

45
| 模型 | 任务 | hmean | 模型下载地址 |
WenmuZhou's avatar
WenmuZhou committed
46
|:---:|:---:|:---:| :---:|
47
| LayoutXLM | SER | 0.9038 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) |
WenmuZhou's avatar
WenmuZhou committed
48
49
| LayoutXLM | RE | 0.7483 | [链接](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) |
| LayoutLMv2 | SER | 0.8544 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar)
WenmuZhou's avatar
WenmuZhou committed
50
| LayoutLMv2 | RE | 0.6777 | [链接](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) |
51
| LayoutLM | SER | 0.7731 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) |
WenmuZhou's avatar
add re  
WenmuZhou committed
52

WenmuZhou's avatar
WenmuZhou committed
53
<a name="3"></a>
WenmuZhou's avatar
add re  
WenmuZhou committed
54

WenmuZhou's avatar
WenmuZhou committed
55
## 3. 效果演示
littletomatodonkey's avatar
littletomatodonkey committed
56
57
58

**注意:** 测试图片来源于XFUN数据集。

WenmuZhou's avatar
WenmuZhou committed
59
60
61
<a name="31"></a>

### 3.1 SER
littletomatodonkey's avatar
littletomatodonkey committed
62

WenmuZhou's avatar
WenmuZhou committed
63
![](../../doc/vqa/result_ser/zh_val_0_ser.jpg) | ![](../../doc/vqa/result_ser/zh_val_42_ser.jpg)
WenmuZhou's avatar
add re  
WenmuZhou committed
64
---|---
littletomatodonkey's avatar
littletomatodonkey committed
65

WenmuZhou's avatar
add re  
WenmuZhou committed
66
图中不同颜色的框表示不同的类别,对于XFUN数据集,有`QUESTION`, `ANSWER`, `HEADER` 3种类别
littletomatodonkey's avatar
littletomatodonkey committed
67

WenmuZhou's avatar
add re  
WenmuZhou committed
68
69
70
* 深紫色:HEADER
* 浅紫色:QUESTION
* 军绿色:ANSWER
littletomatodonkey's avatar
littletomatodonkey committed
71

WenmuZhou's avatar
add re  
WenmuZhou committed
72
在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
littletomatodonkey's avatar
littletomatodonkey committed
73

WenmuZhou's avatar
WenmuZhou committed
74
<a name="32"></a>
littletomatodonkey's avatar
littletomatodonkey committed
75

WenmuZhou's avatar
WenmuZhou committed
76
### 3.2 RE
littletomatodonkey's avatar
littletomatodonkey committed
77

WenmuZhou's avatar
WenmuZhou committed
78
![](../../doc/vqa/result_re/zh_val_21_re.jpg) | ![](../../doc/vqa/result_re/zh_val_40_re.jpg)
WenmuZhou's avatar
add re  
WenmuZhou committed
79
---|---
littletomatodonkey's avatar
littletomatodonkey committed
80
81


WenmuZhou's avatar
add re  
WenmuZhou committed
82
图中红色框表示问题,蓝色框表示答案,问题和答案之间使用绿色线连接。在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
littletomatodonkey's avatar
littletomatodonkey committed
83

WenmuZhou's avatar
WenmuZhou committed
84
<a name="4"></a>
WenmuZhou's avatar
add re  
WenmuZhou committed
85

WenmuZhou's avatar
WenmuZhou committed
86
## 4. 安装
WenmuZhou's avatar
add re  
WenmuZhou committed
87

WenmuZhou's avatar
WenmuZhou committed
88
89
90
<a name="41"></a>

### 4.1 安装依赖
littletomatodonkey's avatar
littletomatodonkey committed
91
92
93
94

- **(1) 安装PaddlePaddle**

```bash
WenmuZhou's avatar
WenmuZhou committed
95
python3 -m pip install --upgrade pip
littletomatodonkey's avatar
littletomatodonkey committed
96
97

# GPU安装
98
python3 -m pip install "paddlepaddle-gpu>=2.2" -i https://mirror.baidu.com/pypi/simple
littletomatodonkey's avatar
littletomatodonkey committed
99
100

# CPU安装
101
python3 -m pip install "paddlepaddle>=2.2" -i https://mirror.baidu.com/pypi/simple
littletomatodonkey's avatar
littletomatodonkey committed
102
103
104
105

```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。

WenmuZhou's avatar
WenmuZhou committed
106
<a name="42"></a>
littletomatodonkey's avatar
littletomatodonkey committed
107

WenmuZhou's avatar
WenmuZhou committed
108
### 4.2 安装PaddleOCR(包含 PP-OCR 和 VQA)
littletomatodonkey's avatar
littletomatodonkey committed
109
110
111
112

- **(1)pip快速安装PaddleOCR whl包(仅预测)**

```bash
113
python3 -m pip install paddleocr
littletomatodonkey's avatar
littletomatodonkey committed
114
115
```

littletomatodonkey's avatar
littletomatodonkey committed
116
- **(2)下载VQA源码(预测+训练)**
littletomatodonkey's avatar
littletomatodonkey committed
117
118
119
120
121
122
123
124
125
126

```bash
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR

# 如果因为网络问题无法pull成功,也可选择使用码云上的托管:
git clone https://gitee.com/paddlepaddle/PaddleOCR

# 注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
```

127
- **(3)安装VQA的`requirements`**
littletomatodonkey's avatar
littletomatodonkey committed
128
129

```bash
130
python3 -m pip install -r ppstructure/vqa/requirements.txt
littletomatodonkey's avatar
littletomatodonkey committed
131
```
WenmuZhou's avatar
WenmuZhou committed
132
<a name="5"></a>
littletomatodonkey's avatar
littletomatodonkey committed
133

WenmuZhou's avatar
WenmuZhou committed
134
## 5. 使用
littletomatodonkey's avatar
littletomatodonkey committed
135

WenmuZhou's avatar
WenmuZhou committed
136
<a name="51"></a>
littletomatodonkey's avatar
littletomatodonkey committed
137

WenmuZhou's avatar
WenmuZhou committed
138
### 5.1 数据和预训练模型准备
littletomatodonkey's avatar
littletomatodonkey committed
139

140
141
142
143
如果希望直接体验预测过程,可以下载我们提供的预训练模型,跳过训练过程,直接预测即可。

* 下载处理好的数据集

littletomatodonkey's avatar
littletomatodonkey committed
144
145
146
147
148
149
150
151
152
处理好的XFUN中文数据集下载地址:[https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)


下载并解压该数据集,解压后将数据集放置在当前目录下。

```shell
wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar
```

153
* 转换数据集
littletomatodonkey's avatar
littletomatodonkey committed
154

155
若需进行其他XFUN数据集的训练,可使用下面的命令进行数据集的转换
littletomatodonkey's avatar
littletomatodonkey committed
156

157
158
159
```bash
python3 ppstructure/vqa/helper/trans_xfun_data.py --ori_gt_path=path/to/json_path --output_path=path/to/save_path
```
littletomatodonkey's avatar
littletomatodonkey committed
160

WenmuZhou's avatar
WenmuZhou committed
161
162
163
<a name="52"></a>

### 5.2 SER
littletomatodonkey's avatar
littletomatodonkey committed
164

165
166
167
168
169
170
启动训练之前,需要修改下面的四个字段

1. `Train.dataset.data_dir`:指向训练集图片存放目录
2. `Train.dataset.label_file_list`:指向训练集标注文件
3. `Eval.dataset.data_dir`:指指向验证集图片存放目录
4. `Eval.dataset.label_file_list`:指向验证集标注文件
littletomatodonkey's avatar
littletomatodonkey committed
171

172
* 启动训练
littletomatodonkey's avatar
littletomatodonkey committed
173
```shell
174
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/ser/layoutxlm.yml
littletomatodonkey's avatar
littletomatodonkey committed
175
176
```

177
178
最终会打印出`precision`, `recall`, `hmean`等指标。
`./output/ser_layoutxlm/`文件夹中会保存训练日志,最优的模型和最新epoch的模型。
littletomatodonkey's avatar
littletomatodonkey committed
179

zhoujun's avatar
zhoujun committed
180
181
* 恢复训练

182
183
恢复训练需要将之前训练好的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。

zhoujun's avatar
zhoujun committed
184
```shell
185
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
zhoujun's avatar
zhoujun committed
186
187
188
189
```

* 评估

190
评估需要将待评估的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
littletomatodonkey's avatar
littletomatodonkey committed
191
192

```shell
193
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
littletomatodonkey's avatar
littletomatodonkey committed
194
```
195
最终会打印出`precision`, `recall`, `hmean`等指标
littletomatodonkey's avatar
littletomatodonkey committed
196

197
* 使用`OCR引擎 + SER`串联预测
littletomatodonkey's avatar
littletomatodonkey committed
198

199
使用如下命令即可完成`OCR引擎 + SER`的串联预测
littletomatodonkey's avatar
littletomatodonkey committed
200
201

```shell
WenmuZhou's avatar
WenmuZhou committed
202
CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/layoutxlm.yml  -o Architecture.Backbone.checkpoints=PP-Layout_v1.0_ser_pretrained/ Global.infer_img=doc/vqa/input/zh_val_42.jpg
littletomatodonkey's avatar
littletomatodonkey committed
203
204
```

205
206
最终会在`config.Global.save_res_path`字段所配置的目录下保存预测结果可视化图像以及预测结果文本文件,预测结果文本文件名为`infer_results.txt`

littletomatodonkey's avatar
littletomatodonkey committed
207
208
*`OCR引擎 + SER`预测系统进行端到端评估

209
210
首先使用 `tools/infer_vqa_token_ser.py` 脚本完成数据集的预测,然后使用下面的命令进行评估。

littletomatodonkey's avatar
littletomatodonkey committed
211
212
```shell
export CUDA_VISIBLE_DEVICES=0
WenmuZhou's avatar
WenmuZhou committed
213
python3 helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json  --pred_json_path output_res/infer_results.txt
littletomatodonkey's avatar
littletomatodonkey committed
214
215
```

WenmuZhou's avatar
WenmuZhou committed
216
<a name="53"></a>
littletomatodonkey's avatar
littletomatodonkey committed
217

WenmuZhou's avatar
WenmuZhou committed
218
### 5.3 RE
littletomatodonkey's avatar
littletomatodonkey committed
219

WenmuZhou's avatar
add re  
WenmuZhou committed
220
* 启动训练
littletomatodonkey's avatar
littletomatodonkey committed
221

222
启动训练之前,需要修改下面的四个字段
WenmuZhou's avatar
add re  
WenmuZhou committed
223

224
225
226
227
1. `Train.dataset.data_dir`:指向训练集图片存放目录
2. `Train.dataset.label_file_list`:指向训练集标注文件
3. `Eval.dataset.data_dir`:指指向验证集图片存放目录
4. `Eval.dataset.label_file_list`:指向验证集标注文件
zhoujun's avatar
zhoujun committed
228
229

```shell
230
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/re/layoutxlm.yml
zhoujun's avatar
zhoujun committed
231
232
```

233
234
235
236
237
238
最终会打印出`precision`, `recall`, `hmean`等指标。
`./output/re_layoutxlm/`文件夹中会保存训练日志,最优的模型和最新epoch的模型。

* 恢复训练

恢复训练需要将之前训练好的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
WenmuZhou's avatar
add re  
WenmuZhou committed
239

zhoujun's avatar
zhoujun committed
240
```shell
241
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
zhoujun's avatar
zhoujun committed
242
243
```

244
* 评估
zhoujun's avatar
zhoujun committed
245

246
评估需要将待评估的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
WenmuZhou's avatar
add re  
WenmuZhou committed
247
248

```shell
249
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
WenmuZhou's avatar
add re  
WenmuZhou committed
250
```
251
最终会打印出`precision`, `recall`, `hmean`等指标
WenmuZhou's avatar
add re  
WenmuZhou committed
252

253
* 使用`OCR引擎 + SER + RE`串联预测
WenmuZhou's avatar
add re  
WenmuZhou committed
254

255
使用如下命令即可完成`OCR引擎 + SER + RE`的串联预测
WenmuZhou's avatar
add re  
WenmuZhou committed
256
257
```shell
export CUDA_VISIBLE_DEVICES=0
WenmuZhou's avatar
WenmuZhou committed
258
python3 tools/infer_vqa_token_ser_re.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=PP-Layout_v1.0_re_pretrained/ Global.infer_img=doc/vqa/input/zh_val_21.jpg -c_ser configs/vqa/ser/layoutxlm.yml -o_ser Architecture.Backbone.checkpoints=PP-Layout_v1.0_ser_pretrained/
WenmuZhou's avatar
add re  
WenmuZhou committed
259
```
littletomatodonkey's avatar
littletomatodonkey committed
260

261
262
最终会在`config.Global.save_res_path`字段所配置的目录下保存预测结果可视化图像以及预测结果文本文件,预测结果文本文件名为`infer_results.txt`

WenmuZhou's avatar
WenmuZhou committed
263
<a name="6"></a>
264

WenmuZhou's avatar
WenmuZhou committed
265
## 6. 参考链接
littletomatodonkey's avatar
littletomatodonkey committed
266
267
268
269

- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
- XFUND dataset, https://github.com/doc-analysis/XFUND