README.md 8.52 KB
Newer Older
WenmuZhou's avatar
add re  
WenmuZhou committed
1
# 文档视觉问答(DOC-VQA)
littletomatodonkey's avatar
littletomatodonkey committed
2

WenmuZhou's avatar
WenmuZhou committed
3
VQA指视觉问答,主要针对图像内容进行提问和回答,DOC-VQA是VQA任务中的一种,DOC-VQA主要针对文本图像的文字内容提出问题。
WenmuZhou's avatar
add re  
WenmuZhou committed
4
5
6
7

PP-Structure 里的 DOC-VQA算法基于PaddleNLP自然语言处理算法库进行开发。

主要特性如下:
littletomatodonkey's avatar
littletomatodonkey committed
8
9

- 集成[LayoutXLM](https://arxiv.org/pdf/2104.08836.pdf)模型以及PP-OCR预测引擎。
WenmuZhou's avatar
WenmuZhou committed
10
11
- 支持基于多模态方法的语义实体识别 (Semantic Entity Recognition, SER) 以及关系抽取 (Relation Extraction, RE) 任务。基于 SER 任务,可以完成对图像中的文本识别与分类;基于 RE 任务,可以完成对图象中的文本内容的关系提取,如判断问题对(pair)。
- 支持SER任务和RE任务的自定义训练。
WenmuZhou's avatar
add re  
WenmuZhou committed
12
13
- 支持OCR+SER的端到端系统预测与评估。
- 支持OCR+SER+RE的端到端系统预测。
littletomatodonkey's avatar
littletomatodonkey committed
14
15
16
17
18


本项目是 [LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding](https://arxiv.org/pdf/2104.08836.pdf) 在 Paddle 2.2上的开源实现,
包含了在 [XFUND数据集](https://github.com/doc-analysis/XFUND) 上的微调代码。

WenmuZhou's avatar
add re  
WenmuZhou committed
19
20
## 1 性能

WenmuZhou's avatar
WenmuZhou committed
21
我们在 [XFUN](https://github.com/doc-analysis/XFUND) 的中文数据集上对算法进行了评估,性能如下
WenmuZhou's avatar
add re  
WenmuZhou committed
22

23
| 模型 | 任务 | hmean | 模型下载地址 |
WenmuZhou's avatar
WenmuZhou committed
24
|:---:|:---:|:---:| :---:|
25
26
| LayoutXLM | RE | 0.7483 | [链接](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutXLM_xfun_zh.tar) |
| LayoutXLM | SER | 0.9038 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutXLM_xfun_zh.tar) |
WenmuZhou's avatar
WenmuZhou committed
27
28
| LayoutLMv2 | RE | 0.6777 | [链接](https://paddleocr.bj.bcebos.com/pplayout/re_LayoutLMv2_xfun_zh.tar) |
| LayoutLMv2 | SER | 0.8544 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLMv2_xfun_zh.tar) |
29
| LayoutLM | SER | 0.7731 | [链接](https://paddleocr.bj.bcebos.com/pplayout/ser_LayoutLM_xfun_zh.tar) |
WenmuZhou's avatar
add re  
WenmuZhou committed
30
31
32
33



## 2. 效果演示
littletomatodonkey's avatar
littletomatodonkey committed
34
35
36

**注意:** 测试图片来源于XFUN数据集。

WenmuZhou's avatar
add re  
WenmuZhou committed
37
### 2.1 SER
littletomatodonkey's avatar
littletomatodonkey committed
38

WenmuZhou's avatar
WenmuZhou committed
39
![](../../doc/vqa/result_ser/zh_val_0_ser.jpg) | ![](../../doc/vqa/result_ser/zh_val_42_ser.jpg)
WenmuZhou's avatar
add re  
WenmuZhou committed
40
---|---
littletomatodonkey's avatar
littletomatodonkey committed
41

WenmuZhou's avatar
add re  
WenmuZhou committed
42
图中不同颜色的框表示不同的类别,对于XFUN数据集,有`QUESTION`, `ANSWER`, `HEADER` 3种类别
littletomatodonkey's avatar
littletomatodonkey committed
43

WenmuZhou's avatar
add re  
WenmuZhou committed
44
45
46
* 深紫色:HEADER
* 浅紫色:QUESTION
* 军绿色:ANSWER
littletomatodonkey's avatar
littletomatodonkey committed
47

WenmuZhou's avatar
add re  
WenmuZhou committed
48
在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
littletomatodonkey's avatar
littletomatodonkey committed
49
50


WenmuZhou's avatar
add re  
WenmuZhou committed
51
### 2.2 RE
littletomatodonkey's avatar
littletomatodonkey committed
52

WenmuZhou's avatar
WenmuZhou committed
53
![](../../doc/vqa/result_re/zh_val_21_re.jpg) | ![](../../doc/vqa/result_re/zh_val_40_re.jpg)
WenmuZhou's avatar
add re  
WenmuZhou committed
54
---|---
littletomatodonkey's avatar
littletomatodonkey committed
55
56


WenmuZhou's avatar
add re  
WenmuZhou committed
57
图中红色框表示问题,蓝色框表示答案,问题和答案之间使用绿色线连接。在OCR检测框的左上方也标出了对应的类别和OCR识别结果。
littletomatodonkey's avatar
littletomatodonkey committed
58

WenmuZhou's avatar
add re  
WenmuZhou committed
59
60
61
62

## 3. 安装

### 3.1 安装依赖
littletomatodonkey's avatar
littletomatodonkey committed
63
64
65
66

- **(1) 安装PaddlePaddle**

```bash
WenmuZhou's avatar
WenmuZhou committed
67
python3 -m pip install --upgrade pip
littletomatodonkey's avatar
littletomatodonkey committed
68
69

# GPU安装
70
python3 -m pip install "paddlepaddle-gpu>=2.2" -i https://mirror.baidu.com/pypi/simple
littletomatodonkey's avatar
littletomatodonkey committed
71
72

# CPU安装
73
python3 -m pip install "paddlepaddle>=2.2" -i https://mirror.baidu.com/pypi/simple
littletomatodonkey's avatar
littletomatodonkey committed
74
75
76
77
78

```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。


WenmuZhou's avatar
add re  
WenmuZhou committed
79
### 3.2 安装PaddleOCR(包含 PP-OCR 和 VQA )
littletomatodonkey's avatar
littletomatodonkey committed
80
81
82
83

- **(1)pip快速安装PaddleOCR whl包(仅预测)**

```bash
84
python3 -m pip install paddleocr
littletomatodonkey's avatar
littletomatodonkey committed
85
86
```

littletomatodonkey's avatar
littletomatodonkey committed
87
- **(2)下载VQA源码(预测+训练)**
littletomatodonkey's avatar
littletomatodonkey committed
88
89
90
91
92
93
94
95
96
97

```bash
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR

# 如果因为网络问题无法pull成功,也可选择使用码云上的托管:
git clone https://gitee.com/paddlepaddle/PaddleOCR

# 注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
```

98
- **(3)安装VQA的`requirements`**
littletomatodonkey's avatar
littletomatodonkey committed
99
100

```bash
101
python3 -m pip install -r ppstructure/vqa/requirements.txt
littletomatodonkey's avatar
littletomatodonkey committed
102
103
```

WenmuZhou's avatar
add re  
WenmuZhou committed
104
## 4. 使用
littletomatodonkey's avatar
littletomatodonkey committed
105
106


WenmuZhou's avatar
add re  
WenmuZhou committed
107
### 4.1 数据和预训练模型准备
littletomatodonkey's avatar
littletomatodonkey committed
108

109
110
111
112
如果希望直接体验预测过程,可以下载我们提供的预训练模型,跳过训练过程,直接预测即可。

* 下载处理好的数据集

littletomatodonkey's avatar
littletomatodonkey committed
113
114
115
116
117
118
119
120
121
处理好的XFUN中文数据集下载地址:[https://paddleocr.bj.bcebos.com/dataset/XFUND.tar](https://paddleocr.bj.bcebos.com/dataset/XFUND.tar)


下载并解压该数据集,解压后将数据集放置在当前目录下。

```shell
wget https://paddleocr.bj.bcebos.com/dataset/XFUND.tar
```

122
* 转换数据集
littletomatodonkey's avatar
littletomatodonkey committed
123

124
若需进行其他XFUN数据集的训练,可使用下面的命令进行数据集的转换
littletomatodonkey's avatar
littletomatodonkey committed
125

126
127
128
```bash
python3 ppstructure/vqa/helper/trans_xfun_data.py --ori_gt_path=path/to/json_path --output_path=path/to/save_path
```
littletomatodonkey's avatar
littletomatodonkey committed
129

WenmuZhou's avatar
add re  
WenmuZhou committed
130
### 4.2 SER任务
littletomatodonkey's avatar
littletomatodonkey committed
131

132
133
134
135
136
137
启动训练之前,需要修改下面的四个字段

1. `Train.dataset.data_dir`:指向训练集图片存放目录
2. `Train.dataset.label_file_list`:指向训练集标注文件
3. `Eval.dataset.data_dir`:指指向验证集图片存放目录
4. `Eval.dataset.label_file_list`:指向验证集标注文件
littletomatodonkey's avatar
littletomatodonkey committed
138

139
* 启动训练
littletomatodonkey's avatar
littletomatodonkey committed
140
```shell
141
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/ser/layoutxlm.yml
littletomatodonkey's avatar
littletomatodonkey committed
142
143
```

144
145
最终会打印出`precision`, `recall`, `hmean`等指标。
`./output/ser_layoutxlm/`文件夹中会保存训练日志,最优的模型和最新epoch的模型。
littletomatodonkey's avatar
littletomatodonkey committed
146

zhoujun's avatar
zhoujun committed
147
148
* 恢复训练

149
150
恢复训练需要将之前训练好的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。

zhoujun's avatar
zhoujun committed
151
```shell
152
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
zhoujun's avatar
zhoujun committed
153
154
155
156
```

* 评估

157
评估需要将待评估的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
littletomatodonkey's avatar
littletomatodonkey committed
158
159

```shell
160
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/ser/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
littletomatodonkey's avatar
littletomatodonkey committed
161
```
162
最终会打印出`precision`, `recall`, `hmean`等指标
littletomatodonkey's avatar
littletomatodonkey committed
163

164
* 使用`OCR引擎 + SER`串联预测
littletomatodonkey's avatar
littletomatodonkey committed
165

166
使用如下命令即可完成`OCR引擎 + SER`的串联预测
littletomatodonkey's avatar
littletomatodonkey committed
167
168

```shell
WenmuZhou's avatar
WenmuZhou committed
169
CUDA_VISIBLE_DEVICES=0 python3 tools/infer_vqa_token_ser.py -c configs/vqa/ser/layoutxlm.yml  -o Architecture.Backbone.checkpoints=PP-Layout_v1.0_ser_pretrained/ Global.infer_img=doc/vqa/input/zh_val_42.jpg
littletomatodonkey's avatar
littletomatodonkey committed
170
171
```

172
173
最终会在`config.Global.save_res_path`字段所配置的目录下保存预测结果可视化图像以及预测结果文本文件,预测结果文本文件名为`infer_results.txt`

littletomatodonkey's avatar
littletomatodonkey committed
174
175
*`OCR引擎 + SER`预测系统进行端到端评估

176
177
首先使用 `tools/infer_vqa_token_ser.py` 脚本完成数据集的预测,然后使用下面的命令进行评估。

littletomatodonkey's avatar
littletomatodonkey committed
178
179
```shell
export CUDA_VISIBLE_DEVICES=0
WenmuZhou's avatar
WenmuZhou committed
180
python3 helper/eval_with_label_end2end.py --gt_json_path XFUND/zh_val/xfun_normalize_val.json  --pred_json_path output_res/infer_results.txt
littletomatodonkey's avatar
littletomatodonkey committed
181
182
183
```


WenmuZhou's avatar
add re  
WenmuZhou committed
184
### 3.3 RE任务
littletomatodonkey's avatar
littletomatodonkey committed
185

WenmuZhou's avatar
add re  
WenmuZhou committed
186
* 启动训练
littletomatodonkey's avatar
littletomatodonkey committed
187

188
启动训练之前,需要修改下面的四个字段
WenmuZhou's avatar
add re  
WenmuZhou committed
189

190
191
192
193
1. `Train.dataset.data_dir`:指向训练集图片存放目录
2. `Train.dataset.label_file_list`:指向训练集标注文件
3. `Eval.dataset.data_dir`:指指向验证集图片存放目录
4. `Eval.dataset.label_file_list`:指向验证集标注文件
zhoujun's avatar
zhoujun committed
194
195

```shell
196
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/re/layoutxlm.yml
zhoujun's avatar
zhoujun committed
197
198
```

199
200
201
202
203
204
最终会打印出`precision`, `recall`, `hmean`等指标。
`./output/re_layoutxlm/`文件夹中会保存训练日志,最优的模型和最新epoch的模型。

* 恢复训练

恢复训练需要将之前训练好的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
WenmuZhou's avatar
add re  
WenmuZhou committed
205

zhoujun's avatar
zhoujun committed
206
```shell
207
CUDA_VISIBLE_DEVICES=0 python3 tools/train.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
zhoujun's avatar
zhoujun committed
208
209
```

210
* 评估
zhoujun's avatar
zhoujun committed
211

212
评估需要将待评估的模型所在文件夹路径赋值给 `Architecture.Backbone.checkpoints` 字段。
WenmuZhou's avatar
add re  
WenmuZhou committed
213
214

```shell
215
CUDA_VISIBLE_DEVICES=0 python3 tools/eval.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=path/to/model_dir
WenmuZhou's avatar
add re  
WenmuZhou committed
216
```
217
最终会打印出`precision`, `recall`, `hmean`等指标
WenmuZhou's avatar
add re  
WenmuZhou committed
218

219
* 使用`OCR引擎 + SER + RE`串联预测
WenmuZhou's avatar
add re  
WenmuZhou committed
220

221
使用如下命令即可完成`OCR引擎 + SER + RE`的串联预测
WenmuZhou's avatar
add re  
WenmuZhou committed
222
223
```shell
export CUDA_VISIBLE_DEVICES=0
WenmuZhou's avatar
WenmuZhou committed
224
python3 tools/infer_vqa_token_ser_re.py -c configs/vqa/re/layoutxlm.yml -o Architecture.Backbone.checkpoints=PP-Layout_v1.0_re_pretrained/ Global.infer_img=doc/vqa/input/zh_val_21.jpg -c_ser configs/vqa/ser/layoutxlm.yml -o_ser Architecture.Backbone.checkpoints=PP-Layout_v1.0_ser_pretrained/
WenmuZhou's avatar
add re  
WenmuZhou committed
225
```
littletomatodonkey's avatar
littletomatodonkey committed
226

227
228
229
最终会在`config.Global.save_res_path`字段所配置的目录下保存预测结果可视化图像以及预测结果文本文件,预测结果文本文件名为`infer_results.txt`


littletomatodonkey's avatar
littletomatodonkey committed
230
231
232
233
234
## 参考链接

- LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding, https://arxiv.org/pdf/2104.08836.pdf
- microsoft/unilm/layoutxlm, https://github.com/microsoft/unilm/tree/master/layoutxlm
- XFUND dataset, https://github.com/doc-analysis/XFUND