infer_rec.py 6.65 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
WenmuZhou's avatar
WenmuZhou committed
20

LDOUBLEV's avatar
LDOUBLEV committed
21
22
import os
import sys
littletomatodonkey's avatar
littletomatodonkey committed
23
import json
WenmuZhou's avatar
WenmuZhou committed
24

25
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
26
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey committed
27
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
LDOUBLEV's avatar
LDOUBLEV committed
28

29
30
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

WenmuZhou's avatar
WenmuZhou committed
31
import paddle
tink2123's avatar
tink2123 committed
32

WenmuZhou's avatar
WenmuZhou committed
33
from ppocr.data import create_operators, transform
WenmuZhou's avatar
WenmuZhou committed
34
from ppocr.modeling.architectures import build_model
WenmuZhou's avatar
WenmuZhou committed
35
from ppocr.postprocess import build_post_process
36
from ppocr.utils.save_load import load_model
WenmuZhou's avatar
WenmuZhou committed
37
from ppocr.utils.utility import get_image_file_list
WenmuZhou's avatar
WenmuZhou committed
38
import tools.program as program
LDOUBLEV's avatar
LDOUBLEV committed
39
40
41


def main():
WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
47
48
49
    global_config = config['Global']

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    if hasattr(post_process_class, 'character'):
littletomatodonkey's avatar
littletomatodonkey committed
50
51
52
53
        char_num = len(getattr(post_process_class, 'character'))
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
andyjpaddle's avatar
andyjpaddle committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
                if config['Architecture']['Models'][key]['Head'][
                        'name'] == 'MultiHead':  # for multi head
                    out_channels_list = {}
                    if config['PostProcess'][
                            'name'] == 'DistillationSARLabelDecode':
                        char_num = char_num - 2
                    out_channels_list['CTCLabelDecode'] = char_num
                    out_channels_list['SARLabelDecode'] = char_num + 2
                    config['Architecture']['Models'][key]['Head'][
                        'out_channels_list'] = out_channels_list
                else:
                    config['Architecture']["Models"][key]["Head"][
                        'out_channels'] = char_num
        elif config['Architecture']['Head'][
                'name'] == 'MultiHead':  # for multi head loss
            out_channels_list = {}
            if config['PostProcess']['name'] == 'SARLabelDecode':
                char_num = char_num - 2
            out_channels_list['CTCLabelDecode'] = char_num
            out_channels_list['SARLabelDecode'] = char_num + 2
            config['Architecture']['Head'][
                'out_channels_list'] = out_channels_list
littletomatodonkey's avatar
littletomatodonkey committed
76
77
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num
WenmuZhou's avatar
WenmuZhou committed
78
79
80

    model = build_model(config['Architecture'])

81
    load_model(config, model)
WenmuZhou's avatar
WenmuZhou committed
82
83
84

    # create data ops
    transforms = []
WenmuZhou's avatar
WenmuZhou committed
85
    for op in config['Eval']['dataset']['transforms']:
WenmuZhou's avatar
WenmuZhou committed
86
87
88
89
90
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name in ['RecResizeImg']:
            op[op_name]['infer_mode'] = True
WenmuZhou's avatar
WenmuZhou committed
91
        elif op_name == 'KeepKeys':
tink2123's avatar
tink2123 committed
92
93
94
95
96
            if config['Architecture']['algorithm'] == "SRN":
                op[op_name]['keep_keys'] = [
                    'image', 'encoder_word_pos', 'gsrm_word_pos',
                    'gsrm_slf_attn_bias1', 'gsrm_slf_attn_bias2'
                ]
andyjpaddle's avatar
andyjpaddle committed
97
            elif config['Architecture']['algorithm'] == "SAR":
98
                op[op_name]['keep_keys'] = ['image', 'valid_ratio']
tink2123's avatar
tink2123 committed
99
100
            else:
                op[op_name]['keep_keys'] = ['image']
WenmuZhou's avatar
WenmuZhou committed
101
102
103
104
        transforms.append(op)
    global_config['infer_mode'] = True
    ops = create_operators(transforms, global_config)

littletomatodonkey's avatar
littletomatodonkey committed
105
106
107
108
109
    save_res_path = config['Global'].get('save_res_path',
                                         "./output/rec/predicts_rec.txt")
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

WenmuZhou's avatar
WenmuZhou committed
110
    model.eval()
littletomatodonkey's avatar
littletomatodonkey committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

    with open(save_res_path, "w") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)
            if config['Architecture']['algorithm'] == "SRN":
                encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
                gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
                gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
                gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)

                others = [
                    paddle.to_tensor(encoder_word_pos_list),
                    paddle.to_tensor(gsrm_word_pos_list),
                    paddle.to_tensor(gsrm_slf_attn_bias1_list),
                    paddle.to_tensor(gsrm_slf_attn_bias2_list)
                ]
andyjpaddle's avatar
andyjpaddle committed
131
132
133
            if config['Architecture']['algorithm'] == "SAR":
                valid_ratio = np.expand_dims(batch[-1], axis=0)
                img_metas = [paddle.to_tensor(valid_ratio)]
littletomatodonkey's avatar
littletomatodonkey committed
134
135
136
137
138

            images = np.expand_dims(batch[0], axis=0)
            images = paddle.to_tensor(images)
            if config['Architecture']['algorithm'] == "SRN":
                preds = model(images, others)
andyjpaddle's avatar
andyjpaddle committed
139
140
            elif config['Architecture']['algorithm'] == "SAR":
                preds = model(images, img_metas)
littletomatodonkey's avatar
littletomatodonkey committed
141
142
143
            else:
                preds = model(images)
            post_result = post_process_class(preds)
littletomatodonkey's avatar
littletomatodonkey committed
144
145
146
147
148
149
150
            info = None
            if isinstance(post_result, dict):
                rec_info = dict()
                for key in post_result:
                    if len(post_result[key][0]) >= 2:
                        rec_info[key] = {
                            "label": post_result[key][0][0],
151
                            "score": float(post_result[key][0][1]),
littletomatodonkey's avatar
littletomatodonkey committed
152
                        }
littletomatodonkey's avatar
littletomatodonkey committed
153
                info = json.dumps(rec_info, ensure_ascii=False)
littletomatodonkey's avatar
littletomatodonkey committed
154
155
156
157
158
159
            else:
                if len(post_result[0]) >= 2:
                    info = post_result[0][0] + "\t" + str(post_result[0][1])

            if info is not None:
                logger.info("\t result: {}".format(info))
160
                fout.write(file + "\t" + info + "\n")
WenmuZhou's avatar
WenmuZhou committed
161
162
    logger.info("success!")

LDOUBLEV's avatar
LDOUBLEV committed
163
164

if __name__ == '__main__':
WenmuZhou's avatar
WenmuZhou committed
165
    config, device, logger, vdl_writer = program.preprocess()
LDOUBLEV's avatar
LDOUBLEV committed
166
    main()